
CSci 450: Organization of Programming
Languages

Developing Functional Programs

H. Conrad Cunningham

16 September 2017

Contents
6 Developing Functional Programs 2

6.1 Chapter Introduction . 2
6.2 Developing a Cosequential Processing Family 2

6.2.1 Function generalization 2
6.2.2 Scope . 2
6.2.3 Frozen spots . 3
6.2.4 Hot spots . 4
6.2.5 Hot spot #1: Variability in total ordering 4
6.2.6 Hot spot #2: Variability in record format 5
6.2.7 Hot spot #3: Independent variability of sequences 6
6.2.8 Hot spot #4: Variability in sequence transformations . . 7
6.2.9 Hot spot #5 :Variability of sequence source/destination . 11
6.2.10 Bag and set operation implementations 11
6.2.11 Sequential file update algorithm (TODO) 13
6.2.12 Recap . 14

6.3 Exercises . 14
6.4 References . 14
6.5 Terms and Concepts . 15

Copyright (C) 2016, 2017, H. Conrad Cunningham

Acknowledgements: In Summer 2016, I adapted and revised the discussion of
function generalization from my and Pallavi Tadepalli’s paper “Using Function
Generalization to Design a Cosequential Processing Framework” (Proceedings of
the 39th Hawaii International Conference on System Sciences, January 2006),

In 2017, I continue to develop this module.

I maintain these notes as text in Pandoc’s dialect of MarkDown using embedded
LaTeX markup for the mathematical formulas and translate them to HTML and

1

PDF

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of Septeber 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Add chapter goals and outcomes
• Cleanup function generalization
• Add eager evaluated version of merge4b, perhaps rename coseq
• Add sequential file update example
• Add more content – e.g., function pipeline?
• Add Exercises
• Add Terms and Concepts

6 Developing Functional Programs

6.1 Chapter Introduction

TODO

6.2 Developing a Cosequential Processing Family

6.2.1 Function generalization

In a previous chapter, we examined families of related functions to define generic,
higher-order functions to capture the computational pattern for each family. In
this chapter, we approach function generalization more systematically.

The function generalization approach begins with a prototype member of the
family. As in similar techniques for building object-oriented software frame-
works, we apply Scope-Commonality-Variability (SCV) analysis to the family
represented by this prototype. We identify the:

• scope – what is in the family and what is not.

• commonalities – the common, reusable aspects of the family. We call these
the frozen spots.

• variabilities – the aspects that are likely to vary among the different
members of the family. We call these the hot spots.

Once we have the above, we incrementally transform the prototype function for
each of the hot spots.

2

A generalizing transformation may replace specific values or data types at a hot
spot by parameters. We may make a type more abstract, perhaps making it
polymorphic. Or we may break a type into several types if it plays potentially
different roles.

Similarly, a generalizing transformation may replace fixed, specialized operations
at a hot spot by abstract operations. We may make an abstract operation a
higher-order parameter of the generalized function.

We ensure that the new, more general function can implement the previous,
more specialized function.

6.2.2 Scope

Cosequential processing concerns the coordinated processing of two ordered se-
quences to produce some result, often a third ordered sequence. Key requirements
include:

• Both input sequences must be ordered according to the same total ordering.

• The processing should be incremental, where only a few elements of each
sequence (perhaps just one) are examined at a time.

This important family includes the ascending merge needed in merge sort, set
and bag operations, and sequential file update applications.

Consider a function merge0 that takes two ascending sequences of integers and
merges them together to form a third ascending sequence.

merge0 :: [Int] -> [Int] -> [Int] -- xs, ys
merge0 [] ys = ys
merge0 xs [] = xs
merge0 xs@(x:xs') ys@(y:ys')

| x < y = x : merge0 xs' ys
| x == y = x : merge0 xs' ys'
| x > y = y : merge0 xs ys'

This function takes two lists of integers and returns a list of integers.

The merge0 function must satisfy a number of properties:

• Precondition: The two input lists must be in ascending order.

• Postcondition: The output list must also be in ascending order. The
number of times an element appears in the output list is the maximum
number of times it appears within one of the two input lists.

• Termination: The sum of the lengths of the two input sequences must
decrease by at least one for each call of the recursive function.

3

For the cosequential processing family, let take function merge0 as the prototype
member.

Aside: The merge0 function differs from the merge function we used in merge
sort in a previous chapter. For merge sort, the x == y leg would need to remove
the head of only one of the input lists, i.e., be defined as either x : merge0 xs'
ys or x : merge0 xs ys'.

6.2.3 Frozen spots

Considering the scope and examining the prototype function merge0, we identify
the following frozen spots for the family of functions:

1. The input consists of two sequences ordered by the same total ordering.

2. The output consists of a sequence ordered by the same total ordering as
the input sequences.

3. The processing is incremental. Each step examines the current element
from each input sequence and advances at least one of the input sequences
for subsequent steps.

4. Each step compares the current elements from the input sequences to
determine what action to take at that step.

The merge function represents the frozen spots of the family. It gives the common
behavior of family members and the relationships among the various elements
of the hot spot subsystems. A hot spot subsystem consists of a set of Haskell
functions, types, and class definitions that add the desired variability into the
merge function.

6.2.4 Hot spots

Again considering the scope and examining the prototype function merge0, we
can identify the following hot spots:

1. Variability in the total ordering used for the input and output sequences,
i.e., of the comparison operators and input sequence type.

2. The ability to have more complex data entities in the input and output
sequences, i.e., variability in “record” format.

3. The ability to vary the input and output sequence structures independently
of each other.

4. Variability in the transformations applied to the data as it passes into the
output.

5. Variability in the sources of the input sequences and destination of the
output sequence.

4

We need to be careful to avoid enumerating hot spots that are unlikely to be
needed in an application.

Now let’s analyze each hot spot, design a hot spot subsystem, and carry out the
appropriate transformations to generalize the Haskell program.

6.2.5 Hot spot #1: Variability in total ordering

In the function merge0, the input and output sequences are restricted to elements
of type Int and the comparison operations, hence, to the integer comparisons.

The responsibility associated with hot spot #1 is to enable the base type of the
sequences to be any type upon which an appropriate ordering is defined. In this
transformation, we still consider all three sequences as containing simple values
of the same type.

We can generalize the function to take and return sequences of any ordered type
by making the type of the list polymorphic. Using a type variable a, we can
redefine the type signature to be [a]. However, we need to constrain type a
to be a type for which an appropriate total ordering is defined. We do this by
requiring that the type be restricted to those in the predefined Haskell type
class Ord. This class consists of the group of types for which all six relational
operators are defined.

The function resulting from generalization step is merge1.

merge1 :: Ord a => [a] -> [a] -> [a] -- xs, ys
merge1 [] ys = ys
merge1 xs [] = xs
merge1 xs@(x:xs') ys@(y:ys')

| x < y = x : merge1 xs' ys
| x == y = x : merge1 xs' ys'
| x > y = y : merge1 xs ys'

This function represents the frozen spots of the cosequential processing framework.
The implementation of class Ord used in a program is hot spot #1. To satisfy
the requirement represented by frozen spot #1, we require that the two lists xs
and ys be in ascending order.

Note that, if we restrict merge1 polymorphic type a to Int, then:

merge1 xs ys == merge0 xs ys

That is, the generic function merge1 can be specialized to be equivalent to
merge0.

5

6.2.6 Hot spot #2: Variability in record format

The merge1 function works with sequences of any type that have appropriate
comparison operators defined. This allows the elements to be of some built-in
type such as Int or String or some user-defined type that has been declared as
an instance of the Ord class. Thus each individual data item is of a single type.

In general, however, applications in this family will need to work with data
elements that have more complex structures. We refer to these more complex
structures as records in the general sense, not just the Haskell data structure by
that name.

The responsibility associated with hot spot #2 is to enable the elements of the
sequences to be values with more complex structures, i.e., records. Each record
is composed of one or more fields of which some subset defines the key. The
value of the key provides the information for ordering the records within that
sequence.

In this transformation, we still consider all three sequences as containing simple
values of the same type. We abstract the key as a function on the record type
that returns a value of some Ord type to enable the needed comparisons. We
transform the merge1 function by adding key as a higher-order parameter.

The function resulting from this generalization is merge2.

merge2 :: Ord b => (a -> b) -> [a] -> [a] -> [a] -- key, xs, ys
merge2 key [] ys = ys
merge2 key xs [] = xs
merge2 key xs@(x:xs') ys@(y:ys')

| key x < key y = x : merge2 key xs' ys
| key x == key y = x : merge2 key xs' ys'
| key x > key y = y : merge2 key xs ys'

The higher-order parameter key represents hot spot #2 in the generalized
function design.

Hot spot #1 is the implementation of Haskell class Ord for values of type b.

To satisfy the requirement represented by frozen spot #1, the sequence of keys
corresponding to each input sequence, i.e., map key xs and map key ys, must
be in ascending order.

Also note that

merge2 id xs ys == merge1 xs ys

where id is the identity function. Thus merge1 is a specialization of merge2.

6

6.2.7 Hot spot #3: Independent variability of sequences

In merge2, the records are of the same type in all three sequences. The key
extraction function is also the same for all sequences.

Some cosequential processing applications, however, require that the record
structure vary among the sequences. For example, the sequential file update
application usually involves a master file and a transaction file as the inputs and
a new master file as the output. The master records and transaction records
usually carry different information.

The responsibility associated with hot spot #3 is to enable the three sequences
to be varied independently. That is, the records in one sequence may differ in
structure from the records in the others.

This requires separate key extraction functions for the two input sequences. These
must, however, still return key values from the same total ordering. Because
the data types for the two input sequences may differ and both may differ from
the output data type, we must introduce record transformation functions that
convert the input data types to the output types.

The function resulting from the transformation is merge3.

merge3 :: Ord d => (a -> d) -> (b -> d) -- kx, ky
-> (a -> c) -> (b -> c) -- tx, ty
-> [a] -> [b] -> [c] -- xs, ys

merge3 kx ky tx ty xs ys = mg xs ys
where

mg [] ys = map ty ys
mg xs [] = map tx xs
mg xs@(x:xs') ys@(y:ys')

| kx x < ky y = tx x : mg xs' ys
| kx x == ky y = tx x : mg xs' ys'
| kx x > ky y = ty y : mg xs ys'

Higher-order parameters kx and ky are the key extraction functions for the first
and second inputs, respectively. Similarly, tx and ty are the corresponding
functions to transform those inputs to the output.

Hot spot #3 consists of these four functions. In some sense, this transformation
subsumes hot spot #2.

To avoid repetition of the many unchanging arguments in the recursive calls, the
definition of merge3 uses an auxiliary function definition mg.

The nonrecursive legs use the higher-order library function map. To satisfy the
requirement represented by frozen spot #1, the sequence of keys corresponding
to each input sequence, i.e., map kx xs and map ky ys, must be in ascending
order.

7

If xs and ys are of the same type, then it is true that:

merge3 key key id id xs ys == merge2 key xs ys

Thus merge2 is a specialization of merge3.

6.2.8 Hot spot #4: Variability in sequence transformations

Function merge3 enabled simple one-to-one, record-by-record transformations of
the input sequences to create the output sequence. Such simple transformations
are not sufficient for practical situations.

For example, in the sequential file update application, each key may be associated
with no more than one record in the master file. However, there may be any
number of update transactions that must be performed against a master record
before the new master record can be output. Thus, there needs to be some
local state maintained throughout the processing of all the transaction records
associated with one master record.

Before we address the issue of this variation directly, let us generalize the merge
function to make the state that currently exists (i.e., the evolving output list)
explicit in the parameter list.

To do this, we replace the backward linear recursive merge3 function by its tail
recursive generalization. That is, we add an accumulating parameter ss that is
used to collects the output during the recursive calls and then to generate the
final output when the end of an input sequence is reached.

The initial value of this argument is normally a nil list, but it does enable some
other initial value to be prepended to the output list. This transformation is
shown as function merge4a below.

merge4a :: Ord d => (a -> d) -> (b -> d) -- kx, ky
-> (a -> c) -> (b -> c) -- tx, ty
-> [c] -> [a] -> [b] -> [c] -- ss, xs, ys

merge4a kx ky tx ty ss xs ys = mg ss xs ys
where

mg ss [] ys = ss ++ map ty ys
mg ss xs [] = ss ++ map tx xs
mg ss xs@(x:xs') ys@(y:ys')

| kx x < ky y = mg (ss ++ [tx x]) xs' ys
| kx x == ky y = mg (ss ++ [tx x]) xs' ys'
| kx x > ky y = mg (ss ++ [ty y]) xs ys'

Note that the following holds:

merge4a kx ky tx ty ss xs ys == ss ++ merge3 kx ky tx ty xs ys

Thus function merge3 is a specialization of merge4a.

8

Unfortunately, building up the state ss requires a relatively expensive appending
to the end of a list (e.g., ss ++ [tx x] in the third leg).

Now consider hot spot #4 more explicitly. The responsibility associated with
the hot spot is to enable the use of more general transformations on the input
sequences to produce the output sequence.

To accomplish this, we introduce an explicit state to record the relevant aspects
of the computation to some position in the two input sequences. Each call of the
merge function can examine the current values from the input sequences and
update the value of the state appropriately for the next call.

In some sense, the merge function “folds” together the values from the two input
sequences to compute the state. At the end of both input sequences, the merge
function then transforms the state into the output sequence.

To accomplish this, we can generalize merge4a. We generalize the accumulating
parameter ss in merge4a to be a parameter s that represents the state. We also
replace the two simple record-to-record transformation functions tx and ty by
more flexible transformation functions tl, te, and tg, that update the state in
the three guards of the recursive leg and functions tty and ttx that update the
state when the first and second input sequences, respectively, become empty.

For the “equals” guard, the amount that the input sequences are advanced also
becomes dependent upon the state of the computation. This is abstracted as
functions nex on the first input sequence and ney on the second. To satisfy the
requirement represented by frozen spot #3, the pair of functions nex and ney
must make the following progress requirement true for each call of mg:

if (kx x == ky y) then
(length (nex s xs) < length xs) ||
(length (ney s ys) < length ys)

else True

That is, the client of the framework must ensure that at least one of the input
sequences will be advanced by at least one element. We also introduce the new
function res to take the final state of the computation and return the output
sequence.

The above transformation results in function merge4b.

merge4b :: Ord d => (a -> d) -> (b -> d) -> -- kx, ky
(e -> a -> b -> e) -> -- tl
(e -> a -> b -> e) -> -- te
(e -> a -> b -> e) -> -- tg
(e -> [a] -> [a]) -> -- nex
(e -> [b] -> [b]) -> -- ney
(e -> a -> e) -> -- ttx
(e -> b -> e) -> -- tty
(e -> [c]) -> e -> -- res, s

9

[a] -> [b] -> [c] -- xs, ys
merge4b kx ky tl te tg nex ney ttx tty res s xs ys

= mg s xs ys
where

mg s [] ys = res (foldl tty s ys)
mg s xs [] = res (foldl ttx s xs)
mg s xs@(x:xs') ys@(y:ys')

| kx x < ky y = mg (tl s x y) xs' ys
| kx x == ky y = mg (te s x y) (nex s xs) (ney s ys)
| kx x > ky y = mg (tg s x y) xs ys

The function uses the Prelude function foldl in the first two legs. This function
continues the computation beginning with the state computed by the recursive
leg and processes the remainder of the nonempty input sequence by “folding”
the remaining elements as defined in the functions ttx and tty.

As was the case for merge3, frozen spot #1 requires that map kx xs and map
ky ys be in ascending order for calls to merge4b

Hot spot #4 consists of the eight functions tl, te, tg, ttx, tty, nex ney, and
res.
The following property also holds:

merge4b kx ky
(\ss x y -> ss ++ [tx x]) -- tl
(\ss x y -> ss ++ [tx x]) -- te
(\ss x y -> ss ++ [ty y]) -- tg
(\ss xs -> tail xs) -- nex
(\ss ys -> tail ys) -- ney
(\ss x -> ss ++ [x]) -- ttx
(\ss y -> ss ++ [y]) -- tty
id ss xs ys -- res, ss, xs, ys

== merge4a kx ky tx ty ss xs ys
== ss ++ merge3 kx ky tx ty xs ys

That is, we can define the general transformation functions so that they have the
same effect as the record-to-record transformations of merge4a. The statement of
this property uses anonymous functions. (lambda expression) feature of Haskell.

Thus function merge3 is a specialization of merge4a, which in turn is a special-
ization of function merge4b.

A problem with the above “implementation” of merge3 is that the merge4b
parameters tl, te, tg, ttx, and tty all involve an expensive operation to
append to the end of the list ss.

An alternative would be to build the state sequence in reverse order and then
reverse the result as shown below.

merge4b kx ky

10

(\ss x y -> reverse (tx x) ++ ss) -- tl
(\ss x y -> reverse (tx x) ++ ss) -- tl
(\ss x y -> reverse (ty y) ++ ss) -- tg
(\ss xs -> tail xs) -- nex
(\ss ys -> tail ys) -- ney
(\ss x -> x : ss) -- ttx
(\ss y -> y : ss) -- tty
reverse ss xs ys -- res, ss, xs, ys

== merge4a kx ky tx ty ss xs ys
== ss ++ merge3 kx ky tx ty xs ys

TODO: Possibly include a version with selective eager evaluation (similar to
below) and rename coseq.

merge4c :: Ord d => (a -> d) -> (b -> d) -> -- kx, ky
(e -> a -> b -> e) -> -- tl
(e -> a -> b -> e) -> -- te
(e -> a -> b -> e) -> -- tg
(e -> [a] -> [a]) -> -- nex
(e -> [b] -> [b]) -> -- ney
(e -> a -> e) -> -- ttx
(e -> b -> e) -> -- tty
(e -> [c]) -> e -> -- res, s
[a] -> [b] -> [c] -- xs, ys

merge4b kx ky tl te tg nex ney ttx tty res s xs ys
= mg s xs ys

where
mg s [] ys = res (foldl tty s ys)
mg s xs [] = res (foldl ttx s xs)
mg s xs@(x:xs') ys@(y:ys')

| kx x < ky y = (mg $! (tl s x y)) xs' ys
| kx x == ky y = (mg $! (te s x y)) ((nex $! s) xs)

((ney $! s) ys)
| kx x > ky y = (mg $! (tg s x y)) xs ys'

6.2.9 Hot spot #5 :Variability of sequence source/destination

Hot spot #5 concerns the ability to take the input sequences from many possible
sources and to direct the output to many possible destinations.

In the Haskell merge functions, these sequences are represented as the pervasive
polymorphic list data type. The redirection is simply a matter of writing
appropriate functions to produce the input lists and to consume its output list.
No changes are needed to the merge4b function itself.

Of course, for any expressions (e.g., function calls) ex and ey that generate
the input sequence arguments xs and ys of merge4b, it must be the case that

11

sequences map kx ex and map ky ey are ascending.

6.2.10 Bag and set operation implementations

TODO: Possibly reexpress some of the lambdas above with standard combinators.

Mathematically, a bag (also called a multiset) is an unordered collection of
elements in which each element may occur one or more times. We can model
a bag as a total function (called the multiplicity function) over the domain of
elements to the natural numbers where the numbers 0 and above denote the
number of occurrences of the element in the bag.

A set is thus a bag for which there is no more than one occurence of any element.

If we restrict the elements to a Haskell data type that is an instance of class
Ord, we can represent a bag by an ascending list of values and a set by an
increasing list of values. With this representation, we can implement the bag an
set operations as special cases of cosequential processing.

The intersection of two bags consists of only the elements that occur in both
bags such that the number of occurrences is the minimum number for the two
input bags. We can express the bag intersection of two ascending lists in terms
of merge4b as follows.

bagIntersect xs ys =
merge4b id id

(\s x y -> s)
(\s x y -> x:s)
(\s x y -> s)
(\s xs -> tail xs)
(\s ys -> tail ys)
(\s x -> s)
(\s y -> s)
reverse [] xs ys

This function only adds an element to the output when it occurs in both input
lists.

If we require the two input lists to be increasing, the above also implements set
intersection.

The sum of two bags consists of the elements that occur in either bag such that
the number of occurrences is the total number for both bags. We can express
the bag sum of two ascending lists in terms of merge4b as follows.

bagSum xs ys =
merge4b id id

(\s x y -> x:s)
(\s x y -> x:y:s)

12

(\s x y -> y:s)
(\s xs -> tail xs)
(\s ys -> tail ys)
(\s x -> x:s)
(\s y -> y:s)
reverse [] xs ys

The union of two bags consists of the elements that occur in either bag such
that the number of occurrences is the minimum number in the two input lists.
The prototype function merge0 implements this operation on ascending lists.

The subtraction of bag B from bag A, denoted A - B, consists of only the elements
that occur in both bags such that the number of occurrences is the number of
occurrences in A minus those in B.

Questions:

• How can we represent set union in terms of merge4b?

• How can we represent a merge function that can be used in the merge sort
of two lists (whose elements are from an instance of class Ord)?

• How can we implement a bag union function bagUnion in terms of
merge4b?

• How can we implement a bag subtraction function bagSub xs ys in terms
of merge4b?

• If the elements of the input lists are not instances of class Ord, how can
we implement bag union? bag intersection?

6.2.11 Sequential file update algorithm (TODO)

-- Simple Master-Transaction Update
-- Master increasing list [(Account,Amount)]
-- with Account < maxAccount
-- Transaction ascending list [(Account,Amount)]
-- with Account < maxAccount
-- Result is new Master increasing list [(Account,Amount)]
-- with Account < maxAccount

type Account = Int
type Amount = Integer

seqUpdate :: [(Account,Amount)] -> [(Account,Amount)]
-> [(Account,Amount)]

seqUpdate = merge4c fst fst
masterlt mastereq mastergt
masternext transnext

13

notrans nomaster
getResult initState

initState = ([],[])

maxAccount = maxBound :: Account

masterlt (out,[]) m t = (m:out,[])
-- no transactions for this master

masterlt (out,[cur]) m t = (cur:out,[])
-- processed all transactions for this master

mastereq (out,[]) (ma,mb) (_,tc)
= (out, [(ma,mb+tc)]) -- first transaction

mastereq (out,[(sa,sb)]) (_,_) (_,tc)
= (out, [(sa,sb+tc)]) -- subsequent transaction

mastergt (_,_) m t
= error ("Transactions not ascending at " ++ show t)

masternext (_,_) ms = ms -- do not advance master on eq

transnext (_,_) ts = let ys = tail ts
in if null ys then [(maxAccount,0)] else ys
-- advance transaction on eq
-- force master with final (maxAccount,0)

notrans (out,[]) m = (m:out,[])
notrans (out,[cur]) m = (m:cur:out,[])

nomaster ([],[]) t -- only for empty master list
= error ("Unmatched transaction " ++ show t)

nomaster (out,[]) (maxInt,_) -- transaction list ended
= (out,[])

nomaster _ t
= error ("Unmatched transaction " ++ show t)

getResult (nms,[]) = reverse nms

6.2.12 Recap

This case study illustrates the function generalization method. It begins with
a simple Haskell program to merge two ascending lists of integers into third
ascending list of integers. This program is generalized in a step by step fashion
to produce a new program that is capable of carrying out any operation from

14

the family of cosequential processing programs.

Although some members of the cosequential processing family can be rather
complicated, the family has the characteristic that the primary driver for the
algorithm can be concisely stated as a simple loop (i.e., recursive function).

6.3 Exercises

TODO

6.4 References

[Cunningham-Tadepalli 2006] H. Conrad Cunningham and Pallavi Tade-
palli. “Using Function Generalization to Design a Cosequential Processing
Framework,” In Proceedings of the 39th Hawaii International Conference
on System Sciences, January 2006.

6.5 Terms and Concepts

TODO

15

	Developing Functional Programs
	Chapter Introduction
	Developing a Cosequential Processing Family
	Function generalization
	Scope
	Frozen spots
	Hot spots
	Hot spot #1: Variability in total ordering
	Hot spot #2: Variability in record format
	Hot spot #3: Independent variability of sequences
	Hot spot #4: Variability in sequence transformations
	Hot spot #5 :Variability of sequence source/destination
	Bag and set operation implementations
	Sequential file update algorithm (TODO)
	Recap

	Exercises
	References
	Terms and Concepts

