
CSci 450: Org. of Programming Languages
List Programming

H. Conrad Cunningham

18 October 2017

Contents
4 List Programming 2

4.1 Chapter Introduction . 2
4.2 Polymorphic List Data Type . 2

4.2.1 String: String . 4
4.2.2 Polymorphic lists . 5
4.2.3 Kinds of polymorphism 6

4.3 Programming with List Patterns 7
4.3.1 Summing a list of integers: sum' 7
4.3.2 Multiplying a list of numbers: product' 9
4.3.3 Length of a list: length' 10
4.3.4 Remove duplicate elements: remdups 11
4.3.5 More list patterns . 12

4.4 Data sharing . 13
4.4.1 Preconditions for head and tail 14
4.4.2 Dropping elements from beginning of list 14
4.4.3 Taking elements from the beginning of a list 15

4.5 Using Infix Operations . 16
4.5.1 Appending two lists: ++ 17
4.5.2 Properties of operations 18
4.5.3 Element selection: !! . 19
4.5.4 Reversing a list: rev . 19
4.5.5 Tail recursive reverse . 20

4.6 More Useful List Functions . 21
4.6.1 Another list-breaking function: splitAt 21
4.6.2 List-combining operations: zip and unzip 22

4.7 Local Definitions . 22
4.8 Insertion Sort . 24
4.9 Exercises . 25
4.10 References . 32
4.11 Terms and Concepts . 32

1

Copyright (C) 2016, 2017, H. Conrad Cunningham

Acknowledgements: In Summer 2016, I adapted and revised this chapter
from chapter 5 of my Notes on Functional Programming with Haskell and from
my notes on Functional Data Structures from the Spring 2016 Scala variant of
CSci 555. The latter was based, in part, on chapter 3 of the book Functional
Programming in Scala by Paul Chiusano and Runar Bjarnason (Manning, 2015).

In 2017, I continue to develop this chapter.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of September 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Consider other examples–small and large
• Consider discussion of testing
• Consider integrating more discussion of abstract data types
• Mention other Prelude or library functions not discussed
• Edit and add more exercises (e.g., Candy Bowl, Cookie Jar)

4 List Programming

4.1 Chapter Introduction

This chapter introduces the list data type and develops the fundamental program-
ming concepts and techniques for first-order polymorphic functions to process
lists.

The goals of the chapter are for the students to be able to:

• develop correct Haskell functional programs consisting of first-order poly-
morphic functions that solve problems by processing lists

• develop Haskell list-processing programs that terminate and are efficient
and elegant.

Upon successful completion of this chapter, students should be able to:

1. describe the basic syntax and semantics of first-order, polymorphic, Haskell
functions for processing lists and strings

2. describe the Haskell list and string data types

2

3. develop first-order Haskell functional programs using lists, strings, pattern
matching, polymorphism, and infix operators

4. apply the follow-types-to-implementations (form of algorithm follows the
form of the data) and other techniques to develop Haskell programs

5. compare different implementations of the same functionality for termination
and efficiency

6. use the appropriate programming techniques to develop Haskell
list-processing programs that terminate and execute efficiently

7. appreciate the mathematical characteristics of Haskell functions (e.g., to
state properties of functions and operators)

The Haskell module for this chapter is in Mod04Lists.hs.

4.2 Polymorphic List Data Type

As we have seen, to do functional programming, we construct programs from
collections of pure functions. Given the same arguments, a pure function always
returns the same result. The function application is thus referentially transparent.

Such a pure function does not have side effects. It does not modify a variable or a
data structure in place. It does not throw an exception or perform input/output.
It does nothing that can be seen from outside the function except return its
value.

Thus the data structures in purely functional programs must be immutable, not
subject to change as the program executes.

Functional programming languages often have a number of immutable data
structures. However, the most salient one is the list.

We mentioned the Haskell list and string data types in a previous chapter. In
this chapter, we look at lists in depth. Strings are just special cases of lists.

S### List: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
the notation [t] to denote a list of zero or more elements of type t.

A list is is hierarchical data structure. It is either empty or it is a pair consisting
of a head element and a tail that is itself a list of elements.

The Haskell list is an example of an algebraic data type. We discuss that concept
in a later section.

A matching pair of empty square brackets ([]), pronounced “nil”, represents the
empty list.

3

code04/Mod04Lists.hs

A colon (:), pronounced “cons”, represents the list constructor operation between
a head element on the left and a tail list on the right.

Example lists include:

[]
2:[]
3:(2:[])

The Haskell language adds a bit of syntactic sugar to make expressing lists easier.
(By syntactic sugar, we mean notation that simplifies expression of a concept
but that adds no new functionality to the language. The new notation can be
defined in terms of other notation within the language.)

The cons operations binds from the right. Thus

5:(3:(2:[]))

can be written as:

5:3:2:[]

We can write this as a comma-separated sequence enclosed in brackets as follows:

[5,3,2]

Haskell supports two list selector functions, head and tail, such that

head (h:t) =⇒ h

where h is the head element of list, and

tail (h:t) =⇒ t

where t is the tail list.

Aside: Instead of head, Lisp uses car and other languages use hd, first, etc.
Instead of tail, Lisp uses cdr and other languages use tl, rest, etc.

The Prelude library supports a number of other useful functions on lists. For
example, length takes a list and returns its length.

Note that lists are defined inductively. That is, they are defined in terms of a
base element [] and the list constructor operation cons (:). As you would expect,
a form of mathematical induction can be used to prove that list-manipulating
functions satisfy various properties. We will discuss in a later chapter.

4.2.1 String: String

In Haskell, a string is treated as a list of characters. Thus the data type String
is defined as a type synonym:

type String = [Char]

4

In addition to the standard list syntax, a String literal can be given by a
sequence of characters enclosed in double quotes. For example, "oxford" is
shorthand for [’o’,’x’,’f’,’o’,’r’,’d’].

Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

Example: "Hello\nworld!\n" is a string that has two newline characters em-
bedded.

Example: "\12\&3" represents the list ['\12','3'].

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings.

Consider a function to compute the length of a string:

len :: String -> Int
len s = if s == [] then 0 else 1 + len (tail s)

Note that the argument string for the recursive application of len is simpler
(i.e., shorter) than the original argument. Thus len will eventually be applied
to a [] argument and, hence, len’s evaluation will terminate.

How efficient is this function (i.e., its time and space complexity)?

Consider the evaluation of the expression len "five".

len "five"
=⇒ if "five" == [] then 0 else 1 + len (tail "five")
=⇒ if False then 0 else 1 + len (tail "five")
=⇒ 1 + len (tail "five")
=⇒ 1 + len "ive"
=⇒ 1 + (if "ive" == [] then 0 else 1 + len (tail "ive"))
=⇒ 1 + (if False then 0 else 1 + len (tail "ive"))
=⇒ 1 + (1 + len (tail "ive"))
=⇒ 1 + (1 + len "ve")
=⇒ 1 + (1 + (if "ve" == [] then 0 else 1 + len (tail "ve")))
=⇒ 1 + (1 + (if False then 0 else 1 + len (tail "ve")))
=⇒ 1 + (1 + (1 + len (tail "ve")))
=⇒ 1 + (1 + (1 + len "e"))
=⇒ 1 + (1 + (1 + (if "e" == [] then 0 else 1 + len (tail "e"))))
=⇒ 1 + (1 + (1 + (if False then 0 else 1 + len (tail "e"))))
=⇒ 1 + (1 + (1 + (1 + len (tail "e"))))
=⇒ 1 + (1 + (1 + (1 + len "")))
=⇒ 1 + (1 + (1 + (1 + 0)))
=⇒ 1 + (1 + (1 + 1))
=⇒ 1 + (1 + 2)
=⇒ 1 + 3

5

=⇒ 4

The number of reduction steps in proportional to the length of the input list.
Similarly, the amount of space required (given lazy evaluation) is also proportional
to the length of the input list.

4.2.2 Polymorphic lists

The above definition of len only works for strings. How can we make it work
for a list of integers or other elements?

For an arbitrary type a, we want len to take objects of type [a] and return an
Int value. Thus its type signature could be:

len :: [a] -> Int

If a is a variable name (i.e., it begins with a lowercase letter) that does not
already have a value, then the type expression a used as above is a type variable;
it can represent an arbitrary type. All occurrences of a type variable appearing
in a type signature must, of course, represent the same type.

An object whose type includes one or more type variables can be thought of
having many different types and is thus described as having a polymorphic type.
(The next subsection gives more detail on polymorphism in general.)

Polymorphism and first-class functions are powerful abstraction mechanisms:
they allow irrelevant detail to be hidden.

Other examples of polymorphic list functions from the Prelude library include:

head :: [a] -> a
tail :: [a] -> [a]
(:) :: a -> [a] -> [a]

4.2.3 Kinds of polymorphism

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (and
operator symbols) are associated with implementations of the functions.

In general, two primary kinds of polymorphism exist in programming languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

6

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism, which we examine in a later chapter,
implements overloading polymorphism in Haskell.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e., exhibiting early binding).

The object oriented programming (e.g., Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g., Haskell) community often calls this
simply polymorphism.

7

4.3 Programming with List Patterns

In the factorial examples in an earlier chapter, we used integer patterns and
guards to break out various cases of a function definition into separate equations.
Lists and other data types may also be used in patterns.

Pattern matching helps enable the form of the algorithm to match the form
of the data structure. Or, as others may say, it helps in following types to
implementations.

This is considered elegant. It is also pragmatic. The structure of the data often
suggests the algorithm that is needed for a task.

In general, lists have two cases that need to be handled: the empty list and the
nonempty list. Breaking a definition for a list-processing function into these two
cases is usually a good place to begin.

4.3.1 Summing a list of integers: sum'

Consider a function sum' to sum all the elements in a list of integers. That is, if
the list is

v1, v2, v3, · · · , vn,

then the sum of the list is the value resulting from inserting the addition operator
between consecutive elements of the list:

v1 + v2 + v3 + · · ·+ vn.

Because addition is an associative operation (that is, (x + y) + z = x + (y + z)
for any integers x, y, and z), the above additions can be computed in any order.

What is the sum of an empty list?

Because there are no numbers to add, then, intuitively, zero seems to be the
proper value for the sum.

In general, if some binary operation is inserted between the elements of a list,
then the result for an empty list is the identity element for the operation. Since
0 + x = x = x + 0 for all integers x, zero is the identity element for addition.

Now, how can we compute the sum of a nonempty list?

Because a nonempty list has at least one element, we can remove one element
and add it to the sum of the rest of the list. Note that the “rest of the list”
is a simpler (i.e., shorter) list than the original list. This suggests a recursive
definition.

The fact that Haskell defines lists recursively as a cons of a head element with
a tail list suggests that we structure the algorithm around the structure of the
beginning of the list.

8

Bringing together the two cases above, we can define the function sum' in Haskell
as follows. This is similar to the Prelude function sum.

{- Function sum' sums a list of integers. It is similar to
function sum in the Prelude.

-}
sum' :: [Int] -> Int
sum' [] = 0 -- nil list
sum' (x:xs) = x + sum' xs -- non-nil list

• As noted previously, all of the text between the symbol “--” and the end
of the line represents a comment; it is ignored by the Haskell interpreter.

The text enclosed by the {- and -} is a block comment, that can extend
over multiple lines.

• This definition uses two legs. The equation in the first leg is used for nil
list arguments, the second for non-nil arguments.

• Note the (x:xs) pattern in the second leg. The “:” denotes the list
constructor operation cons.

If this pattern succeeds, then the head element of the list argument is
bound to the variable x and the tail of the list argument is bound to the
variable xs. These bindings hold for the right-hand side of the equation.

• The use of the cons in the pattern simplifies the expression of the case.
Otherwise the second leg would have to be stated using the head and tail
selectors as follows:

sum' xs = head xs + sum' (tail xs)

• We use the simple name x to represent items of some type and the name
xs, the same name with an s (for sequence) appended, to represent a list of
that same type. This is a useful convention (adopted from the classic Bird
and Wadler textbook [Bird-Wadler 1998]) that helps make a definition
easier to understand.

• Remember that patterns (and guards) are tested in the order of occurrence
(i.e., left to right, top to bottom). Thus, in most situations, the cases
should be listed from the most specific (e.g., nil) to the most general (e.g.,
non-nil).

• The length of a non-nil argument decreases by one for each successive re-
cursive application. Thus sum' will eventually be applied to a [] argument
and terminate.

For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8:[], function
sum' computes

2 + (4 + (6 + (8 + 0)))

9

giving the integer result 20.

Function sum' is backward linear recursive; its time and space complexity are
both O(n), where n is the length of the input list.

We could, of course, redefine this to use a tail-recursive auxiliary function. With
tail call optimization, the recursion could be converted into a loop. It would still
be order O(n) in time complexity (but with a smaller constant factor) but O(1)
in space.

4.3.2 Multiplying a list of numbers: product'

Now consider a function product' to multiply together a list of integers.

The product of an empty list is 1 (which is the identity element for multiplication).

The product of a nonempty list is the head of the list multiplied by the product
of the tail of the list, except that, if a 0 occurs anywhere in the list, the product
of the list is 0.

We can thus define product' with two base cases and one recursive case, as
follows. This is similar to the Prelude function product.

product' :: [Integer] -> Integer
product' [] = 1
product' (0:_) = 0
product' (x:xs) = x * product' xs

Note the use of the wildcard pattern underscore “_” in the second leg above.
This represents a “don’t care” value. In this pattern it matches the tail, but
no value is bound; the right-hand side of the equation does not need the actual
value.

0 is the zero element for the multiplication operation on integers. That is, for
all integers x:

0 ∗ x = x ∗ 0 = 0

For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8:[], function
product' computes:

2 * (4 * (6 * (8 * 1)))

which yields the integer result 384.

For a list consisting of elements 2, 0, 6, and 8, function product' “short circuits”
the computation as:

2 * 0

10

Like sum', function product' is backward linear recursive; it has a worst-case
time complexity of O(n), where n is the length of the input list. It terminates
because the argument of each successive recursive call is one element shorter
than the previous call, approaching the first base case.

As with sum', we could redefine this to use a tail-recursive auxiliary function,
which could evaluate in O(1) space with tail call optimization.

Note that sum' and product' have similar computational patterns. In a later
chapter, we look at how to capture the commonality in a single higher-order
function.

4.3.3 Length of a list: length'

As another example, consider the function for the length of a list that we
discussed earlier (as len). Using list patterns we can define length’ as follows:

length' :: [a] -> Int
length' [] = 0 -- nil list
length' (_:xs) = 1 + length' xs -- non-nil list

Note the use of the wildcard pattern underscore “_”. In this pattern it matches
the head, but no value is bound; the right-hand side of the equation does not
need the actual value.

Given a finite list for its argument, does this function terminate? What are its
time and space complexities?

This definition is similar to the definition for length in the Prelude.

4.3.4 Remove duplicate elements: remdups

Consider the problem of removing adjacent duplicate elements from a list. That
is, we want to replace a group of adjacent elements having the same value by a
single occurrence of that value.

As with the above functions, we let the form of the data guide the form of the
algorithm, following the type to the implementation.

The notion of adjacency is only meaningful when there are two or more of
something. Thus, in approaching this problem, there seem to be three cases to
consider:

• The argument is a list whose first two elements are duplicates; in which
case one of them should be removed from the result.

• The argument is a list whose first two elements are not duplicates; in which
case both elements are needed in the result.

11

• The argument is a list with fewer than two elements; in which case the
remaining element, if any, is needed in the result.

Of course, we must be careful that sequences of more than two duplicates are
handled properly.

Our algorithm thus can examine the first two elements of the list. If they are
equal, then the first is discarded and the process is repeated recursively on
the list remaining. If they are not equal, then the first element is retained in
the result and the process is repeated on the list remaining. In either case the
remaining list is one element shorter than the original list. When the list has
fewer than two elements, it is simply returned as the result.

If we restrict the function to lists of integers, we can define Haskell function
remdups as follows:

remdups :: [Int] -> [Int]
remdups (x:y:xs)
| x == y = remdups (y:xs)
| x /= y = x : remdups (y:xs)

remdups xs = xs

• Note the use of the pattern (x:y:xs). This pattern match succeeds if the
argument list has at least two elements: the head element is bound to x,
the second element to y, and the tail list to xs.

• Note the use of guards to distinguish between the cases where the two
elements are equal (==) and where they are not equal (/=).

• In this definition the case patterns overlap, that is, a list with at least two
elements satisfies both patterns. But since the cases are evaluated top to
bottom, the list only matches the first pattern. Thus the second pattern
just matches lists with fewer than two elements.

What if we wanted to make the list type polymorphic instead of just integers?

At first glance, it would seem to be sufficient to give remdups the polymorphic
type [a] -> [a]. But the guards complicate the situation a bit.

Evaluation of the guards requires that Haskell be able to compare elements of
the polymorphic type a for equality (==) and inequality (/=). For some types
these comparisons may not be supported. (For example, suppose the elements
are functions.) Thus we need to restrict the polymorphism to types in which the
comparisons are supported.

We can restrict the range of types by using a context predicate. The following
type signature restricts the polymorphism of type variable a to the built-in type
class Eq, the group of types for which both equality (==) and inequality (/=)
comparisons have been defined:

remdups :: Eq a => [a] -> [a]

12

Another useful context is the class Ord, which is an extension of class Eq. Ord
denotes the class of objects for which the relational operators <, <=, >, and >=
have been defined in addition to == and /=.

In most situations the type signature can be left off the declaration of a function.
Haskell then attempts to infer an appropriate type. For remdups, the type
inference mechanism would assign the type Eq [a] => [a] -> [a] . However,
in general, it is good practice to give explicit type signatures.

Like the previous functions, remdups is backward linear recursive; it takes a
number of steps that is proportional to the length of the list. This function has
a recursive call on both the duplicate and non-duplicate legs. Each of these
recursive calls uses a list that is shorter than the previous call, thus moving
closer to the base case.

4.3.5 More list patterns

The following table shows Haskell parameter patterns, corresponding arguments,
and the result of the attempted match.

Pattern Argument Succeeds? Bindings
1 1 yes none
x 1 yes x ← 1
(x:y) [1,2] yes x ← 1, y ← [2]
(x:y) [[1,2]] yes x ← [1,2], y ← []
(x:y) ["olemiss"] yes x ← "olemiss", y ← []
(x:y) "olemiss" yes x ← ’o’, y ← "lemiss"
(1:x) [1,2] yes x ← [2]
(1:x) [2,2] no none
(x:_:_:y) [1,2,3,4,5,6] yes x ← 1, y ← [4,5,6]
[] [] yes none
[x] ["Cy"] yes x ← "Cy"
[1,x] [1,2] yes x ← 2
[x,y] [1] no none
(x,y) (1,2) yes x ← 1, y ← 2

4.4 Data sharing

Suppose we have the declaration:

xs = [1,2,3]

As we learned in the data structures course, we can implement this list as a
singly linked list xs with three cells with the values 1, 2, and 3, as shown in the
figure below.

13

Figure 4-1: Data sharing in lists

Consider the following declarations

ys = 0:xs
zs = tail xs

where

• 0:xs returns a list that has a new cell containing 0 in front of the previous
list

• tail xs returns the list consisting of the last two elements of xs

If the linked list xs is immutable (i.e., the values and pointers in the three cells
cannot be changed), then neither of these operations requires any copying.

• The first just constructs a new cell containing 0, links it to the first cell in
list xs, and initializes ys with a reference to the new cell.

• The second just returns a reference to the second cell in list xs and initializes
zs with this reference.

• The original list xs is still available, unaltered.

This is called data sharing. It enables the programming language to implement
immutable data structures efficiently, without copying in many key cases.

Also, such functional data structures are persistent because existing references
are never changed by operations on the data structure.

Consider evaluation of the expression head xs. It must create a copy of the
head element (in this case 1). The result does not share data with the input list.

Similarly, the list returned by function remdups (defined above) does not share
data with its input list.

14

4.4.1 Preconditions for head and tail

What should tail return if the list is nil?

One choice is to return a nil list []. However, it seems illogical for an empty list
to have a tail.

Consider a typical usage of the tail function. It is normally an error for a
program to attempt to get the tail of an empty list. Moreover, a program can
efficiently check whether a list is empty or not. So, in this case, it is better to
consider tail a partial function.

Thus, Haskell defines both tail and head to have the precondition that their
parameters are non-nil lists. If we call either with a nil list, then it will terminate
execution with a standard error message.

4.4.2 Dropping elements from beginning of list

We can generalize tail to a function drop' that removes the first n elements of
a list as follows, (This function is called drop in the Prelude.)

drop' :: Int -> [a] -> [a]
drop' n xs | n <= 0 = xs
drop' _ [] = []
drop' n (_:xs) = drop' (n-1) xs

Example:

drop 2 "oxford" =⇒ · · · "ford"

This function takes a different approach to the “empty list” issue than tail
does. Although it is illogical to take the tail of an empty list, dropping the
first element from an empty list seems subtly different. Given that we often use
drop' in cases where the length of the input list is unknown, dropping the first
element of an empty list does not necessarily indicate a program error.

Suppose instead that drop' would trigger an error when called with an empty
list. To avoid this situation, the program might need to determine the length of
the list argument. This is inefficient, usually requiring a traversal of the entire
list to count the elements. Thus the choice for drop' to return a nil is also
pragmatic.

The drop' function is tail recursive. The result list shares space with the input
list.

The drop' function terminates when either the list argument is empty or the
integer argument is 0 or negative. The function eventually terminates because
each recursive call both shortens the list and decrements the integer.

What is the time complexity of drop'?

15

There are two base cases. For the first leg, the function must terminate
in O(max(1,n)) steps. For the second leg, the function must termi-
nate within O(length xs) steps. So the function must terminate within
O(min(max(1,n),length xs)) steps.

What is the space complexity of drop'?

This tail recursive function evaluates in constant space when optimized.

4.4.3 Taking elements from the beginning of a list

Similarly, we can generalize head' to a function take that takes a number n and
a list and returns the first n elements of the list.

take' :: Int -> [a] -> [a]
take' n _ | n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

Consider the following questions for this function?

• What is returned when the list argument is nil?
• Does evaluation of this function terminate?
• Does the result share data with the input?
• Is the function tail recursive?
• What are its time and space complexities?

Example:

take 2 "oxford" =⇒ · · · "ox"

4.5 Using Infix Operations

In Haskell, a binary operation is a function of type t1 -> t2 -> t3 for some
types t1, t2, and t3.

We usually prefer to use infix syntax rather than prefix syntax to express the
application of a binary operation. Infix operators usually make expressions easier
to read; they also make statement of mathematical properties more convenient.

Often we use several infix operators in an expression. To ensure that the
expression is not ambiguous (i.e., the operations are done in the desired order),
we must either use parentheses to give the order explicitly (e.g., ((y * (z+2))
+ x)) or use syntactic conventions to give the order implicitly.

Typically the application order for adjacent operators of different kinds is deter-
mined by the relative precedence of the operators. For example, the multiplication
(*) operation has a higher precedence (i.e., binding power) than addition (+), so,

16

in the absence of parentheses, a multiplication will be done before an adjacent
addition. That is, x + y * z is taken as equivalent to (x + (y * z)).

In addition, the application order for adjacent operators of the same binding
power is determined by a binding (or association) order. For example, the addi-
tion (+) and subtraction - operations have the same precedence. By convention,
they bind more strongly to the left in arithmetic expressions. That is, x + y -
z is taken as equivalent to ((x + y) - z).

By convention, operators such as exponentiation (denoted by ˆ) and cons bind
more strongly to the right. Some other operations (e.g., division and the relational
comparison operators) have no default binding order–they are said to have free
binding.

Accordingly, Haskell provides the statements infix, infixl, and infixr for
declaring a symbol to be an infix operator with free, left, and right binding,
respectively. The first argument of these statements give the precedence level
as an integer in the range 0 to 9, with 9 being the strongest binding. Normal
function application has a precedence of 10.

The operator precedence table for a few of the common operations from the
Prelude is shown below. We introduce the ++ operator in the next subsection.

infixr 8 ^ -- exponentiation
infixl 7 * -- multiplication
infix 7 / -- division
infixl 6 +, - -- addition, subtraction
infixr 5 : -- cons
infix 4 ==, /=, <, <=, >=, > -- relational comparisons
infixr 3 && -- Boolean AND
infixr 2 || -- Boolean OR

4.5.1 Appending two lists: ++

Suppose we want a function that takes two lists and returns their concatenation,
that is, appends the second list after the first. This function is a binary operation
on lists much like + is a binary operation on integers.

Further suppose we want to introduce the infix operator symbol ++ for the
append function. Since we want to evaluate lists lazily from their heads, we
choose right binding for both cons and ++. Since append is, in a sense, an
extension of cons (:), we give them the same precedence:

infixr 5 ++

Consider the definition of the append function. We must define the ++ operation
in terms of application of already defined list operations and recursive applications
of itself. The only applicable simpler operation is cons.

17

As with previous functions, we follow the type to the implementation–let the
form of the data guide the form of the algorithm.

The cons operator takes an element as its left operand and a list as its right
operand and returns a new list with the left operand as the head and the right
operand as the tail.

Similarly, ++ must take a list as its left operand and a list as its right operand
and return a new list with the left operand as the initial segment and the right
operand as the final segment.

Given the definition of cons, it seems reasonable that an algorithm for ++ must
consider the structure of its left operand. Thus we consider the cases for nil and
non-nil left operands.

• If the left operand is nil, then the function can just return the right operand.

• If the left operand is a cons (that is, non-nil), then the result consists of
the left operand’s head followed by the append of the left operand’s tail to
the right operand.

In following the type to the implementation, we use the form of the left operand
in a pattern match. We define ++ as follows:

infixr 5 ++

(++) :: [a] -> [a] -> [a]
[] ++ xs = xs -- nil left operand
(x:xs) ++ ys = x:(xs ++ ys) -- non-nil left operand

Above we use infix patterns on the left-hand sides of the defining equations.

For the recursive application of ++, the length of the left operand decreases by
one. Hence the left operand of a ++ application eventually becomes nil, allowing
the evaluation to terminate.

Consider the evaluation of the expression [1,2,3] ++ [3,2,1].

[1,2,3] ++ [3,2,1]
=⇒ 1:([2,3] ++ [3,2,1])
=⇒ 1:(2:([3] ++ [3,2,1]))
=⇒ 1:(2:(3:([] ++ [3,2,1])))
=⇒ 1:(2:(3:[3,2,1]))
= [1,2,3,3,2,1]

The number of steps needed to evaluate xs ++ ys is proportional to the length
of xs, the left operand. That is, the time complexity is O(n), where n is the
length xs.

Moreover, xs ++ ys only needs to copy the list xs. The list ys is shared between

18

the second operand and the result. If we did a similar function to append two
(mutable) arrays, we would need to copy both input arrays to create the output
array. Thus, in this case, a linked list is more efficient than arrays!

Consider the following questions:

• Is ++ tail recursive?
• What is the space complexity of ++?

4.5.2 Properties of operations

The append operation has a number of useful algebraic properties, for example,
associativity and an identity element.

Associativity of ++: For any finite lists xs, ys, and zs, xs ++ (ys ++ zs) ==
(xs ++ ys) ++ zs.

Identity for ++: For any finite list xs, [] ++ xs = xs = xs ++ [].

We will prove these and other properties in a later chapter.

Mathematically, the list data type and the binary operation ++ form a kind of
abstract algebra called a monoid. Function ++ is closed (i.e., it takes two lists
and gives a list back), is associative, and has an identity element. ‘ Similarly,
we can state properties of combinations of functions. We can prove these using
techniques we study in a later chapter. For example, consider the functions
defined above in this chapter.

• For all finite lists xs, we have the following distribution properties:

sum' (xs ++ ys) = sum' xs + sum' ys
product' (xs ++ ys) = product' xs * product' ys
length' (xs ++ ys) = length' xs + length' ys

• For all natural numbers n and finite lists xs,

take n xs ++ drop n xs = xs

4.5.3 Element selection: !!

As another example of an infix operation, consider the list selection operator !!.
The expression xs!!n selects element n of list xs where the head is in position 0.
It is defined in the Prelude similar to the way !! is defined below:

infixl 9 !!

(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "!! negative index"
[] !! _ = error "!! index too large"
(x:_) !! 0 = x

19

(_:xs) !! n = xs !! (n-1)

Consider the following questions concerning the element selection operator:

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
• What are its time and space complexities?

4.5.4 Reversing a list: rev

Consider the problem of reversing the order of the elements in a list.

Again we can use the structure of the data to guide the algorithm development.
If the argument is nil, then the function returns nil. If the argument is non-nil,
then the function can append the head element at the back of the reversed tail.

rev :: [a] -> [a]
rev [] = [] -- nil argument
rev (x:xs) = rev xs ++ [x] -- non-nil argument

Given that evaluation of ++ terminates, we note that evaluation of rev also
terminates because all recursive applications decrease the length of the argument
by one.

How efficient is this function?

Consider the evaluation of the expression rev "bat".

rev "bat"
=⇒ (rev "at") ++ "b"
=⇒ ((rev "t") ++ "a") ++ "b"
=⇒ (((rev "") ++ "t") ++ "a") ++ "b"
=⇒ (("" ++ "t") ++ "a") ++ "b"
=⇒ ("t" ++ "a") ++ "b"
=⇒ ('t':("" ++ "a")) ++ "b"
=⇒ "ta" ++ "b"
=⇒ 't':("a" ++ "b")
=⇒ 't':('a':("" ++ "b"))
=⇒ 't':('a':"b")
= "tab"

The evaluation of rev takes O(n2) steps, where n is the length of the argument.
There are O(n) applications of rev; for each application of rev there are O(n)
applications of ++.

The initial list and its reverse do not share data.

20

Function rev has a number of useful properties, for example the following.

Distribution: For any finite lists xs and ys, rev (xs ++ ys) = rev ys ++ rev
xs.

Inverse: For any finite list xs, rev (rev xs) = xs.

Also, for any finite lists xs and ys and natural numbers n, we can state properties
such as:

rev (xs ++ ys) = rev ys ++ rev xs
take n (rev xs) = rev (drop (length xs - n) xs)

4.5.5 Tail recursive reverse

Most of the list function definitions examined so far are backward recursive.
That is, for each case the recursive applications are embedded within another
expression. Operationally, significant work is done after the recursive call returns.

Now let’s look at the problem of reversing a list again to see whether we can
devise a more efficient tail recursive solution.

As we have seen, the common technique for converting a backward linear recursive
definition like rev into a tail recursive definition is to use an accumulating
parameter to build up the desired result incrementally. A possible definition
follows:

rev' [] ys = ys
rev' (x:xs) ys = rev' xs (x:ys)

In this definition parameter ys is the accumulating parameter. The head of the
first argument becomes the new head of the accumulating parameter for the tail
recursive call. The tail of the first argument becomes the new first argument for
the tail recursive call.

We know that rev’ terminates because, for each recursive application, the length
of the first argument decreases toward the base case of [].

We note that rev xs is equivalent to rev’ xs []. (We can prove this using the
techniques in a later chapter.)

To define a single-argument replacement for rev, we can embed the definition of
rev’ as an auxiliary function within the definition of a new function reverse’.
(This is similar to function reverse in the Prelude.)

reverse' :: [a] -> [a]
reverse' xs = rev xs []

where rev [] ys = ys
rev (x:xs) ys = rev xs (x:ys)

21

The where clause introduces the local definition rev’ that is only known within
the right-hand side of the defining equation for the function reverse’.

What is the time complexity of this function?

The evaluation of reverse’ takes O(n) steps, where n is the length of the
argument. There is one application of rev’ for each element; rev’ requires a
single cons operation in the accumulating parameter.

Where did the increase in efficiency come from?

Each application of rev applies ++, a linear time (i.e., O(n)) function. In rev’,
we replaced the applications of ++ by applications of cons, a constant time (i.e.,
O(1)) function.

In addition, a compiler or interpreter that does tail call optimization can translate
this tail recursive call into a loop on the host machine.

4.6 More Useful List Functions

4.6.1 Another list-breaking function: splitAt

Above we defined list-breaking functions take' and drop'. It is sometimes
useful to have a single function that breaks a list into two parts.

The function splitAt (shown below as splitAt') takes an integer n and a list
and returns a pair whose first component is the first n elements of the list and
second component is the list remaining after the first n elements are removed.

splitAt' :: Int -> [a] -> ([a],[a])
splitAt' n xs = (take' n xs, drop' n xs)

Can we write an alternative definition that makes only one pass over argument
xs? (That is, it does not call take' and drop'.)

4.6.2 List-combining operations: zip and unzip

Another useful function in the Prelude is zip (shown below as zip’) which takes
two lists and returns a list of pairs of the corresponding elements. That is, the
function fastens the lists together like a zipper. It’s definition is similar to zip’
given below:

zip' :: [a] -> [b] -> [(a,b)]
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys -- zip.1
zip' _ _ = [] -- zip.1

Function zip applies a tuple-forming operation to the corresponding elements of
two lists. It stops the recursion when either list argument becomes nil. Putting
the recursive case first enabled the two bases cases to be combined into one leg.

22

Example: zip [1,2,3] "oxford" =⇒ · · · [(1,’o’),(2,’x’),(3,’f’)]

Similarly, function unzip in the Prelude takes a list of pairs and returns a pair
of lists. It’s definition is similar to unzip' below.

unzip' :: [(a,b)] -> ([a],[b])
unzip' [] = ([],[])
unzip' ((x,y):ps) = (x:xs, y:ys)

where (xs,ys) = unzip' ps

The Prelude includes versions of zip and unzip that handle the tuple-formation
for up to seven input lists: zip3 · · · zip7 and unzip3 · · · unzip7.

4.7 Local Definitions

The let expression is useful whenever a nested set of definitions is required. It
has the following syntax:

let local_definitions in expression

A let may be used anywhere that an expression my appear in a Haskell program.

For example, consider a function f that takes a list of integers and returns a list
of their squares incremented by one:

f :: [Int] -> [Int]
f [] = []
f xs = let square a = a * a

one = 1
(y:ys) = xs

in (square y + one) : f ys

• square represents a function of one variable.

• one represents a constant, that is, a function of zero variables.

• (y:ys) represents a pattern match binding against argument xs of f.

• Reference to y or ys when argument xs of f is nil results in an error.

• Local definitions square, one, y, and ys all come into scope simultaneously;
their scope is the expression following the in keyword.

• Local definitions may access identifiers in outer scopes (e.g., xs in definition
of (y:ys)) and have definitions nested within themselves.

• Local definitions may be recursive and call each other.

The let clause introduces symbols in a bottom-up manner: it introduces symbols
before they are used.

The where clause is similar semantically, but it introduces symbols in a top-down
manner: the symbols are used and then defined in a where that follows.

23

The where clause is more versatile than the let. It allows the scope of local
definitions to span over several guarded equations while a let’s scope is restricted
to the right-hand side of one equation.

For example, consider the definition:

g :: Int -> Int
g n | check3 == x = x

| check3 == y = y
| check3 == z = z * z

where check3 = n `mod` 3
x = 0
y = 1
z = 2

• The scope of this where clause is over all three guards and their respective
right-hand sides. (Note that the where begins in the same column as the
= rather than to the right as in rev’.)

• Note the use of the modulo function mod as an infix operator. The back-
quotes (‘) around a function name denotes the infix use of the function.

In addition to making definitions easier to understand, local definitions can
increase execution efficiency in some cases. A local definition may introduce a
component into the expression graph that is shared among multiple branches.
Haskell uses graph reduction, so any shared component is evaluated once and
then replaced by its value for subsequent accesses.

The local variable check3 introduces a component shared among all three legs.
It is evaluated once for each call of g.

4.8 Insertion Sort

Consider a function to sort the elements of a list into ascending order.

A list is ascending if every element is <= all of its successors in the list. Successor
means an element that occurs later in the list (i.e., away from the head). A list
is increasing if every element is < its successors. Similarly, a list is descending or
decreasing if every element is >= or >, respectively, its successors.

A simple algorithm to do this is insertion sort. To sort a non-empty list with
head x and tail xs, sort the tail xs and then insert the element x at the right
position in the result. To sort an empty list, just return it.

If we restrict the function to integer lists, we get the following Haskell functions:

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

24

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert x ys)

Insertion sort has a (worst and average case) time complexity of O(n2) where n
is the length of the input list. (Function isort requires n consecutive recursive
calls; each call uses function insert which itself requires on the order of n
recursive calls.)

Now suppose we want to generalize the sorting function and make it polymorphic.
We cannot just add a type parameter a and substitute it for Int everywhere.
Not all Haskell types can be compared on a total ordering (<, <=, >, and >= as
well).

We need to constrain the polymorphism to types in class Ord, as follows:

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert' x ys)

We could define insert' inside isort' and avoid the separate type param-
eterization. But insert is separately useful, so it is reasonable to leave it
external.

Consider the following questions:

• How do we know insert' terminates?
• What are the time and space complexities of insert'?
• How do we know isort' terminates?
• What are the time and space complexities of isort'?

4.9 Exercises

1. Write a Haskell function to compute the maximum value in a nonempty list
of integers. Generalize the function by making it polymorphic, accepting a
value from any ordered type.

2. Write a Haskell function adjpairs that takes a list and returns the list of
all pairs of adjacent elements. For example, adjpairs [2,1,11,4] returns
[(2,1), (1,11), (11,4)].

25

3. Write a Haskell function mean that takes a list of integers and returns the
mean (i.e., average) value for the list.

4. Write tail recursive versions of the Haskell functions sum' and product'.

5. Answer the following questions for the take' function defined in this
chapter:

• What is returned when the list argument is nil?
• Does evaluation of the function terminate?
• Does the result share data with the input?
• Is the function tail recursive?
• What are its time and space complexities?

6. Answer the following question for the ++ operator developed in this chapter.

• Is ++ tail recursive?
• What is the space complexity of ++?

7. Answer the following questions concerning the element selection operator
defined in this chapter.

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
• What are its time and space complexities?

8. Write a version of function splitAt' that makes only one pass over the
input list (that is, does not call take' and drop').

9. Answer the following questions for the isort' and insert' functions.

• How do we know insert' terminates?
• What are the time and space complexities of insert'?
• How do we know isort' terminates?
• What are the time and space complexities of isort'?

10. Hailstone functions.

a. (This part is repeated from a previous chapter.) Develop a function
hailstone to implement the following function:

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

26

hailstone 3
hailstone 10
hailstone 5
hailstone 16
hailstone 8
hailstone 4

hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

b. Write a Haskell function that computes the results of the
hailstone function for each element of a list of positive integers.
The value returned by the hailstone function for each element
of the list should be displayed.

c. Modify the hailstone function to return the function’s “path.”
That is, each application of this path function should return a list
of integers instead of a single integer. The list returned should con-
sist of the arguments of the successive calls to the hailstone func-
tion necessary to compute the result. For example, the hailstone
3 example above should return [3,10,5,16,8,4,2,1].

11. Number base conversion.

a. Write a Haskell function natToBin that takes a natural number and
returns its binary representation as a list of 0’s and 1’s with the
most significant digit at the head. For example, natToBin 23 returns
[1,0,1,1,1]. (Note: Prelude function rem returns the remainder
from dividing its first argument by its second. Enclosing the function
name in backquotes as in ‘rem‘ allows a two-argument function to
be applied in an infix form.)

b. Generalize natToBin to function natToBase that takes a base b (b
\geq 2) and a natural number and returns the base b representation of
the natural number as a list of integer digits with the most significant
digit at the head. For example, natToBase 5 42 returns [1,3,2].

c. Write Haskell function baseToNat, the inverse of the natToBase
function. For any base b (b \geq 2) and natural number n:

baseToNat b (natToBase b n) = n

12. Write a Haskell function merge that takes two increasing lists of integers
and merges them into a single increasing list (without any duplicate values).
A list is increasing if every element is less than (<) its successors. Successor
means an element that occurs later in the list, i.e., away from the head.
Generalize the function by making it polymorphic.

13. Design a module of set operations. Choose a Haskell representation for
sets. Implement functions to make sets from lists and vice versa, to insert

27

and delete elements from sets, to do set union, intersection, and difference,
to test for equality and subset relationships, to determine cardinality, and
so forth.

14. Bag module.

Mathematically, a bag (or multiset) is a function from some arbitrary set
of elements (the domain) to the set of nonnegative integers (the range).
We interpret the nonnegative integer as the number of occurrences of the
element in the bag. Zero means the element does not occur.

From another perspective, a bag is an unordered collection of elements.
Each element may occur one or more times in the bag. (It is like a set
except values can occur multiple times.)

For example, {| "time', "time", "and", "time", "again" |} is a
bag containing 5 strings. There are 3 occurrences of string "time" and 1
occurrence each of strings "and" and "again".

{| 11, 2, 3, 7, 5 |} is a bag of prime numbers. It is also a set because
each element occurs exactly once.

We can represent a bag in many ways in Haskell. Using lists, we could
represent a bag with a simple (unordered) list of elements, an ordered
list of elements, an unordered or an ordered list of tuples which pair an
element with the (nonzero) number of times it occurs, etc. A bag could
also be represented with other data structures such as a Map from library
Data.Map.

Choose some representation for polymorphic bags. You may assume that
the elements in the domain are totally ordered (i.e., are from a type that
is an instance of class Ord), but otherwise the elements can be of any type.

For example, if you use a list representation, you might define the type
synonym:

type Bag a = [a]

Develop a data abstraction (information-hiding) module that encapsulates
the representation of the data structure used to store the elements inside
the module.

The module should include the following public functions. This interface
should be the same even if you change the representation of the data
internally.

a. newBag returns a new bag with no elements (i.e., empty).

b. listToBag takes a list of elements and returns a bag containing
exactly those elements. The number of occurrences of an element in
the list and in the resulting bag is the same.

28

c. bagToList takes a bag and returns a list containing exactly the
elements occurring in the bag. The number of occurrences of an
element in the bag and in the resulting list is the same.

Note: It is not required that bagToList (listToBag xs) == xs.
But it is required that both sides have the same numbers of the same
elements.

d. isEmpty takes a bag and returns True if the bag has no elements and
returns False otherwise.

e. isElem takes an element and a bag and returns True if the element
occurs in the bag and returns False otherwise.

f. size takes a bag and returns its cardinality (i.e., the total number of
occurrences of all elements).

g. occursBag takes an element and a bag and returns the number of
occurrences of the element in the bag.

h. insertElem takes an element and a bag and returns the bag with the
element inserted. Bag insertion either adds a single occurrence of a
new element to the bag or increases the number of occurrences of an
existing element by one.

i. deleteElem takes an element and a bag and returns the bag with
the element deleted. Bag deletion removes a single occurrence of an
element from the bag, decreases the number of occurrences of an
existing element by one, or does not change the bag if the element
does not occur.

j. eqBag takes two bags and returns True if the two bags are equal
(i.e., the same elements and same number of occurrences of each) and
returns False otherwise.

Note: If bagToList xs == bagToList ys, then eqBag xs ys.
However, if eqBag xs ys, it is not required that bagToList xs ==
bagToList ys.

k. unionBag takes two bags and returns their bag union. The union of
bags X and Y contains all elements that occur in either X or Y; the
number of occurrences of an element in the union is the number in X
or in Y, whichever is greater.

l. intersectBag takes two bags and returns their bag intersection. The
intersection of bags X and Y contains all elements that occur in both
X and Y; the number of occurrences of an element in the intersection
is the number in X or in Y, whichever is lesser.

m. sumBag takes two bags and returns their bag sum. The sum of bags
X and Y contains all elements that occur in X or Y; the number of

29

occurrences of an element is the sum of the number of occurrences in
X and Y.

n. diffBag takes two bags and returns the bag difference, first argument
minus the second. The difference of bags X and Y contains all elements
of X that occur in Y fewer times; the number of occurrences of an
element in the difference is the number of occurrences in X minus the
number in Y.

o. subBag takes two bags and returns True if the first is a subbag of the
second and False otherwise. X is a subbag of Y if every element of
X occurs in Y at least as many times as it does in X.

p. bagToSet takes a bag and returns a list containing exactly the set of
elements contained in the bag. Each element occurring one or more
times in the bag will occur exactly once in the list returned.

15. Develop a bag module as described in the previous exercise, but use a
different internal representation than you used in the previous exercise.
The new module should have the same public interface as the previous
module.

16. Unbounded precision arithmetic module for natural numbers (i.e., nonneg-
ative integers). Do not use the builtin Integer type.

a. Define a type synonym BigNat to represent these unbounded precision
natural numbers as lists of Int. Let each element of the list denote a
decimal digit of the “big natural” number represented, with the least
significant digit at the head of the list and the remaining digits given
in order of increasing significance. For example, the integer value
22345678901 is represented as [1,0,9,8,7,6,5,4,3,2,2]. Use the
following “canonical” representation: the value 0 is represented by
the list [0] and positive numbers by a list without “leading” 0 digits
(i.e., 126 is [6,2,1] not [6,2,1,0,0]). You may use the nil list []
to denote an error value.

Define a Haskell module with basic arithmetic operations, including
the following functions. Make sure that BigNat values returned by
these functions are in canonical form.

• intToBig takes a nonnegative Int and returns the BigNat with
the same value.

• strToBig takes a String containing the value of the number
in the “usual” format (i.e., decimal digits, left to right in order
of decreasing significance with zero or more leading spaces, but
with no spaces or punctuation embedded within the number) and
returns the BigNat with the same value.

• bigToStr takes a BigNat and returns a String containing the
value of the number in the “usual” format (i.e., left to right in

30

order of decreasing significance with no spaces or punctuation).

• bigComp takes two BigNats and returns the Int value -1 if the
value of the first is less than the value of the second, the value 0
if they are equal, and the value 1 if the first is greater than the
second.

• bigAdd takes two BigNats and returns their sum as a BigNat.

• bigSub takes two BigNats and returns their difference as a
BigNat, first argument minus the second.

• bigMult takes two BigNats and returns their product as a
BigNat.

b. Use the package to generate a table of factorials for the naturals 0
through 25. Print the values from the table in two right-justified
columns, with the number on the left and its factorial on the right.
(Allow about 30 columns for 25!.)

c. Use the package to generate a table of Fibonacci numbers for the
naturals 0 through 50.

d. Generalize the package to handle signed integers. Add the following
new function:

• bigNeg returns the negation of its BigNat argument.

e. Add the following functions to the package:

• bigDiv takes two BigNats and returns, as a BigNat, the quotient
from dividing the first argument by the second.

• bigRem takes two BigNats and returns, as a BigNat, the remain-
der from dividing the first argument by the second.

17. Define the following set of text-justification functions. You may want to
use Prelude functions like take, drop, and length.

• spaces’ n returns a string of length n containing only space charac-
ters (i.e., the character ’ ’).

• left’ n xs returns a string of length n in which the string xs begins
at the head (i.e., left end).

Examples: left’ 3 "ab" yields`"ab "; left’ 3 "abcd" yields
"abc".

• right’ n xs returns a string of length n in which the string xs ends
at the tail (i.e., right end).

Examples: right’ 3 bc yields bc; right’ 3 abcd yields bcd.

• center’ n xs returns a string of length n in which the string xs is
approximately centered.

31

Example: center’ 4 "bc" yields " bc ".

18. Consider simple mathematical expressions consisting of integer constants,
variable names, parentheses, and the binary operators +, -, *, and /. For
the purposes of this exercise, an expression is a string that satisfies the
following (extended) BNF grammar and lexical conventions:

• The characters in an input string are examined left to right to form
“lexical tokens”. The tokens of the expression “language” consist of
addOps, mulOps,identifiers, numbers, and left and right parentheses.

• An expression may contain space characters at any position except
within a lexical token.

• An addOp token is either a “+” or a “-”; a mulOp token is either a
“*” or a “/”.

• An identifier q is a string of one or more contiguous characters such
that the leftmost character is a letter and the remaining characters
are either letters, digits, or underscore characters.

Examples: “Hi1”, “lo23_1”, “this_is_2_long”

• A number is a string of one or more contiguous characters such that
all (including the leftmost) are digits.

Examples: “1”, “23456711”

• All identifier and number tokens extend as far to the right as possible.
For example, consider the string “A123 12B3+2)”. (Note the space
and right parenthesis characters). This string consists of the six tokens
“A123”, “12”, “B3”, “+”, “2”, and “)”.

Define a Haskell function valid that takes a String and returns True if
the string is an expression as described above and returns False otherwise.

Hints:

• If you need to return more than one value from a function, you can do
so by returning a tuple of those values. This tuple can be decomposed
by Prelude functions such as fst and snd.

• Use of the where or let features can simplify many functions. You
may find Prelude functions such as span, isSpace, isDigit, isAlpha,
and isAlphanum useful.

• You may want to consider organizing your program as a simple
recursive descent recognizer for the expression language.

19. Extend the mathematical expression recognizer of the previous exercise
to evaluate integer expressions with the given syntax. The four binary
operations have their usual meanings.

32

Define a function eval e st that evaluates expression e using symbol
table st. If the expression e is syntactically valid, eval returns a pair
(True,val) where val is the value of e. If e is not valid, eval returns
(False,0).

The symbol table consists of a list of pairs, in which the first component
of a pair is the variable name (a string) and the second is the variable’s
value (an integer).

Example: eval "(2+x) * y" [("y",3),("a",10),("x",8)] yields
(True,30).

4.10 References

[Bird-Wadler 1998] Richard Bird and Philip Wadler. Introduction to Func-
tional Programming, Second Edition, Addison Wesley, 1998. [First Edition,
1988]

[Chiusano-Bjarnason 2015]] Paul Chiusano and Runar Bjarnason, Func-
tional Programming in Scala, Manning, 2015.

[Cunningham 2014] H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1994-2014.

[Thompson 2011] Simon Thompon. Haskell: The Craft of Programming,
Third Edition, Pearson, 2011.

4.11 Terms and Concepts

Polymorphism (ad hoc, overloading, subtyping, parametric), lists (polymorphic,
immutable, persistent, data sharing, empty, nonempty), list and string operations
(cons, head, tail, pattern matching), syntactic sugar, type synonym, type variable,
follow the types to implementations, let the form of the data guide the form of
the algorithm, infix operation, properties of operators (associative, identity, zero,
inverse, distribution), precedence (left, right, free binding), context predicates
(type classes Eq, Ord), insertion sort

33

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	List Programming
	Chapter Introduction
	Polymorphic List Data Type
	String: String
	Polymorphic lists
	Kinds of polymorphism

	Programming with List Patterns
	Summing a list of integers: sum'
	Multiplying a list of numbers: product'
	Length of a list: length'
	Remove duplicate elements: remdups
	More list patterns

	Data sharing
	Preconditions for head and tail
	Dropping elements from beginning of list
	Taking elements from the beginning of a list

	Using Infix Operations
	Appending two lists: ++
	Properties of operations
	Element selection: !!
	Reversing a list: rev
	Tail recursive reverse

	More Useful List Functions
	Another list-breaking function: splitAt
	List-combining operations: zip and unzip

	Local Definitions
	Insertion Sort
	Exercises
	References
	Terms and Concepts

