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• Evaluation of Functional Programs from parts of chapters 1 and 13 of my
Notes on Functional Programming with Haskell and from my notes on
Recursion Concepts and Terminology (Scala version)

• three sections on recursion from my notes on Recursion Concepts and
Terminology (Scala, Elixir, and Lua versions)

• the Haskell factorial, Fibonacci number, and exponentiation functions from
my previous examples in Haskell, Elixir, Scala, Lua, and Elm, which, in
turn, were adapted from the Scheme programs in Abelson and Sussman’s
classic, Scheme-based textbook SICP [Abelson-Sussman 1996].

In 2017, I continue to develop this chapter.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of September 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Review discussion of termination, preconditions, and postconditions for
consistency with later discussion of those topics

• Add Java implementations of the expt3 exponentiation function
• Add new examples?
• Update and add new exercises

3 Evaluation and Efficiency

3.1 Chapter Introduction

This chapter introduces an evaluation model and basic recursive programming
styles and techniques applicable to Haskell programs. As in the previous chapter
(Basic Haskell Functional Programming), it focuses on use of first-order functions
and primitive data types.

The goals of the chapter are for the students to be able to

• analyze Haskell functions to determine under what conditions they termi-
nate normally and how efficient they are

• develop recursive Haskell programs that terminate and are efficient in both
time and space usage

Upon successful completion of this chapter, students should be able to:

1. explain the substitution model
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2. use the substitution model informally to analyze Haskell programs to
determine under what conditions they terminate normally and abnormally

3. use the substitution model informally to analyze Haskell programs to
determine the time and space complexities of their execution

4. compare different implementations of the same functionality for termination
and efficiency

5. use the appropriate programming techniques to develop Haskell programs
that terminate and execute efficiently

6. compare basic functional programming syntax and semantics of Haskell to
that in other programming languages

The Haskell code for this chapter is in file EvalEff.hs.

3.2 Evaluation of Functional Programs

How can we evaluate (i.e., execute) an expression that “calls” a function like the
fact1 function in a previous chapter?

We do this by rewriting expressions using a substitution model, as we see below.
This process depends upon a property of functional languages called referential
transparency.

3.2.1 Referential transparency

Referential transparency is probably the most important property of modern
functional programming languages.

Referential transparency means that, within some well-defined context (e.g., a
function or module definition), a variable (or other symbol) always represents
the same value.

Because a variable always has the same value, we can replace the variable in an
expression by its value or vice versa. Similarly, if two subexpressions have equal
values, we can replace one subexpression by the other. That is, “equals can be
replaced by equals”.

Pure functional programming languages thus use the same concept of a variable
that mathematics uses.

However, in most imperative programming languages, a variable represents an
address or “container” in which values may be stored. A program may change
the value stored in a variable by executing an assignment statement. Thus these
mutable variables break the property of referential transparency.

Because of referential transparency, we can construct, reason about, and manip-
ulate functional programs in much the same way we can any other mathematical
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expressions. Many of the familiar “laws” from high school algebra still hold; new
laws can be defined and proved for less familiar primitives and even user-defined
operators. This enables a relatively natural equational style of reasoning using
the actual expressions of the language.

In contrast, to reason about imperative programs, we usually need to go outside
the language itself and use notation that represents the semantics of the language.

For our purposes here, referential transparency underlies the substitution model
for evaluation of expressions in functional programs.

3.2.2 Substitution model

The substitution model (or reduction model) involves rewriting (or reducing) an
expression to a “simpler” equivalent form. It involves two kinds of replacements:

• replacing a subexpression that satisfies the left-hand side of an equation
by the right-hand side with appropriate substitution of arguments for
parameters

• replacing a primitive application (e.g., + or *) by its value

The term redex refers to a subexpression that can be reduced.

Redexes can be selected for reduction in several ways. For instance, the redex
can be selected based on its position within the expression:

• leftmost redex first, where the leftmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

• rightmost redex first, where the rightmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

The redex can also be selected based on whether or not it is contained within
another redex:

• outermost redex first, where a reducible subexpression that is not contained
within any other reducible subexpression is reduced before one that is
contained within another

• innermost redex first, where a reducible subexpression that contains no
other reducible subexpression is reduced before one that contains others

We will explore these more fully later in these notes. In most circumstances,
Haskell uses a leftmost outermost redex first approach.

In a previous chapter, we defined factorial function fact1 as follows:

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
else
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n * fact1 (n-1)

Consider the expression from else clause in fact1 with n having the value 2:

2 * fact1 (2-1)

This has two redexes: subexpressions 2-1 and fact1 (2-1).

The multiplication cannot be reduced because it requires both of its arguments
to be evaluated.

A function parameter is said to be strict if the value of that argument is always
required. Thus, multiplication is strict in both its arguments. If the value of an
argument is not always required, then it is nonstrict.

The first redex 2-1 is an innermost redex. Since it is the only innermost redex,
it is both leftmost and rightmost.

The second redex fact1 (2-1) is an outermost redex. Since it is the only
outermost redex, it is both leftmost and rightmost.

Now consider the complete evaluation of the expression fact1 2 using leftmost
outermost reduction steps. Below we denote the steps with =⇒ and give the
substitution performed between braces.

fact1 2
=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)
=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1)
=⇒ { evaluate if }

2 * fact1 (2-1)
=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))
=⇒ { evaluate 2-1 in condition }

2 * (if 1 == 0 then 1 else (2-1) * fact1 ((2-1)-1))
=⇒ { evaluate 1 == 0 in condition }

2 * (if False then 1 else (2-1) * fact1 ((2-1)-1))
=⇒ { evaluate if }

2 * ((2-1) * fact1 ((2-1)-1))
=⇒ { evaluate leftmost 2-1 }

2 * (1 * fact1 ((2-1)-1))
=⇒ { replace fact1 ((2-1)-1) using definition, add implicit parentheses }

2 * (1 * (if ((2-1)-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 2-1 in condition }
2 * (1 * (if (1-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 1-1 in condition }
2 * (1 * (if 0 == 0 then 1
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else ((2-1)-1) * fact1 ((2-1)-1)-1))
=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate if }
2 * (1 * 1)

=⇒ { evaluate 1 * 1 }
2 * 1

=⇒ { evaluate 2 * 1 }
2

The rewriting model we have been using so far can be called string reduction
because our model involves the textual replacement of one string by an equivalent
string.

A more efficient alternative is graph reduction. In this technique, the expressions
are represented as (directed acyclic) expression graphs rather than text strings.
The repeated subexpressions of an expression are represented as shared compo-
nents of the expression graph. Once a shared component has been evaluated
once, it need not be evaluated again.

In the example above, subexpression 2-1 is reduced three times. However, all
of those subexpressions come from the initial replacement of fact1 2. Using
graph reduction, only the first of those reductions is necessary.

fact1 2
=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)
=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1) }
=⇒ { evaluate if }

2 * fact1 (2-1)
=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))
=⇒ { evaluate 2-1 because of condition (3 occurrences in graph) }

2 * (if 1 == 0 then 1 else 1 * fact1 (1-1))
=⇒ { evaluate 1 == 0 }

2 * (if False then 1 else 1 * fact1 (1-1))
=⇒ { evaluate if }

2 * (1 * fact1 (1-1))
=⇒ { replace fact1 ((1-1) using definition, add implicit parentheses }

2 * (1 * (if (1-1) == 0 then 1 else (1-1) * fact1 ((1-1)-1))
=⇒ { evaluate 1-1 because of condition (3 occurrences in graph) }

2 * (1 * (if 0 == 0 then 1 else 0 * fact1 (0-1))
=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1 else 0 * fact1 (0-1))
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=⇒ { evaluate if }
2 * (1 * 1)

=⇒ { evaluate 1 * 1 }
2 * 1

=⇒ { evaluate 2 * 1 }
2

In general, the Haskell compiler or interpreter uses a leftmost outermost graph
reduction technique. However, if the value of a function’s argument is always
needed for a computation, then an innermost reduction can be triggered for that
argument. Either the programmer can explicitly require this or the compiler can
detect the situation and automatically trigger the innermost reduction order.

Haskell exhibits lazy evaluation. That is, an expression is not evaluated until its
value is needed, if ever. An outermost reduction corresponds to this evaluation
strategy.

Other functional languages such as Scala and F# exhibit eager evaluation. That
is, an expression is evaluated as soon as possible. An innermost reduction
corresponds to this evaluation strategy.

3.2.3 Time and space complexity

We state efficiency (i.e., time complexity or space complexity) of programs in
terms of the “Big-O” notation and asymptotic analysis.

For example, consider the leftmost outermost graph reduction of function fact1
above. The number of reduction steps required to evaluate fact1 n is 5n + 3.

We let the number of steps in a graph reduction be our measure of time. Thus,
the time complexity of fact1 n is O(n), which means that the time to evaluate
fact1 n is bounded above by some (mathematical) function that is proportional
to the value of n.

Of course, this result is easy to see in this case. The algorithm is dominated by
the n multiplications it must carry out. Alternatively, we see that evaluation
requires on the order of n recursive calls.

We let the number of arguments in an expression graph be our measure of the
size of an expression. Then the space complexity is the maximum size needed for
the evaluation in terms of the input.

This size measure is an indication of the maximum size of the unevaluated
expression that is held at a particular point in the evaluation process. This is a
bit different from the way we normally think of space complexity in imperative
algorithms, that is, the number of “words” required to store the program’s data.
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However, this is not as strange as it may at first appear. As we see later in these
notes, the data structures in functional languages like Haskell are themselves
expressions built by applying constructors to simpler data.

In the case of the graph reduction of fact1 n, the size of the largest expression
is 2n + 16. This is a multiplication for each integer in the range from 1 to n
plus 16 for the full if statement. Thus the space complexity is O(n).

The Big-O analysis is an asymptotic analysis. That is, it estimates the order of
magnitude of the evaluation time or space as the size of the input approaches
infinity (gets large). We often do worst case analyses of time and space. Such
analyses are usually easier to do than average-case analyses.

The time complexity of fact1 n is similar to that of a loop in an imperative
program. However, the space complexity of the imperative loop algorithm is
O(1). So fact1 is not space efficient compared to the imperative loop.

We examine techniques for improving the efficiency of functions below. Later in
these notes, we examine reduction techniques more fully.

3.2.4 Termination

A recursive function has one or more recursive cases and one or more base
(nonrecursive) cases. It may also be undefined for some cases.

To show that evaluation of a recursive function terminates, we must show
that each recursive application always gets closer to a termination condition
represented by a base case.

Again consider fact1 defined above.

If fact1 is called with argument n greater than 0, the argument of the recursive
application in the else clause always decreases to n - 1. Because the argument
always decreases in integer steps, it must eventually reach 0 and, hence, terminate
in the first leg of the definition.

If we call fact1 with argument 0, the function terminates immediately.

What if we call fact1 with its argument less than 0? We consider this issue
below.

3.2.5 Preconditions and postconditions

The precondition of a function is what the caller (i.e., the client of the function)
must ensure holds when calling the function. A precondition may specify the
valid combinations of values of the arguments. It may also record any constraints
on the values of “global” data structures that the function access or modifies.
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If the precondition holds, the supplier (i.e., developer) of the function must
ensure that the function terminates with the postcondition satisfied. That is, the
function returns the required values and/or alters the “global” data structures
in the required manner.

Functions fact1, fact2, and fact3 require that argument n be a natural number
(nonnegative integer) value. If they are applied to a negative value for n, then
the evaluation does not terminate. Operationally, they go into an “infinite loop”
and likely will terminate when the runtime stack overflows.

If function fact4 is called with a negative argument, then all guards and pattern
matches fail. Thus the function aborts with a standard error message.

Thus to ensure normal termination, we impose the precondition

n >= 0

on these factorial functions.

The postcondition of all five factorial functions is that the result returned is the
correct mathematical value of n factorial. For fact4, that is:

fact4 n = fact’(n)

None of the five factorial functions access or modify any global data structures,
so we do not include other items in the precondition or postcondition.

Function fact5 is defined to be 1 for all arguments less than zero. So, if this is
the desired result, we can weaken the precondition to allow all integer values,
for example,

True

and strengthen the postcondition to give the results for negative arguments, for
example:

fact5 n = if n >= 0 then fact’(n) else 1

In the discussion of data abstraction in a previous chapter, we introduced
the concept of invariant. In that context, an invariant is a postcondition of
all constructor functions in the public interface. It is both a precondition
and postcondition of all functions that access or update an “object”. If there
destructor functions that explicitly release the resources of an an object, the
invariant must be a precondition.

3.3 Linear and Nonlinear Recursion

Given the substitution model, we can now consider efficiency and termination in
the design of recursive Haskell functions.

In this section, we examine the concepts of linear and nonlinear recursion. The
following two sections examine other styles.
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The Haskell code for this chapter is in file EvalEff.hs.

3.3.1 Linear recursion

A function definition is linear recursive if at most one recursive application of
the function occurs in any leg of the definition (i.e., along any path from an
entry to a return). The various argument patterns and guards and the branches
of the conditional expression if introduce paths.

The definition of the function fact4 repeated below is linear recursive because
the expression in the second leg of the definition (i.e., n * fact4 (n-1)) involves
a single recursive application. The other leg is nonrecursive; it is the base case
of the recursive definition.

fact4 :: Int -> Int
fact4 n

| n == 0 = 1
| n >= 1 = n * fact4 (n-1)

What are the precondition and postcondition for fact4 n?

As noted above, we must require a precondition of n >= 0 to avoid abnormal
termination. When the precondition holds, the result is:

fact4 n = fact’(n)

What are the time and space complexities of fact4 n?

Function fact4 recurses to a depth of n. As we saw earlier for fact1, it has
time complexity O(n), if we count either the recursive calls or the multiplication
at each level. The space complexity is also O(n) because a new runtime stack
frame is needed for each recursive call.

How do we know that function fact4 n terminates?

For a call fact4 n with n > 0, the argument of the recursive application always
decreases to n - 1. Because the argument always decreases in integer steps, it
must eventually reach 0 and, hence, terminate in the first leg of the definition.

3.3.2 Nonlinear recursion

A nonlinear recursion is a recursive function in which the evaluation of some leg
requires more than one recursive application. For example, the naive Fibonacci
number function fib shown below has two recursive applications in its third leg.
When we apply this function to a nonnegative integer argument greater than 1,
we generate a pattern of recursive applications that has the “shape” of a binary
tree. Some call this a tree recursion.
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fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

What are the precondition and postcondition for fib n?

For fib n, the precondition n >= 0 to ensure that the function is defined. When
called with the precondition satisfied, the postcondition is:

fib n = Fibonacci(n)

How do we know that fib n terminates?

For the recursive case n >= 2. the two recursive calls have arguments that are 1
or 2 less than n. Thus every call gets closer to one of the two base cases.

What are the time and space complexities of fib n?

Function fib is combinatorially explosive, having a time complexity O(fib n).
The space complexity is O(n) because a new runtime stack frame is needed for
each recursive call and the calls recurse to a depth of n.

An advantage of a linear recursion over a nonlinear one is that a linear recursion
can be compiled into a loop in a straightforward manner. Converting a nonlinear
recursion to a loop is, in general, difficult.

3.4 Backward and Forward Recursion

In this section, we examine the concepts of backward and forward recursion.

3.4.1 Backward recursion

A function definition is backward recursive if the recursive application is embedded
within another expression. During execution, the program must complete the
evaluation of the expression after the recursive call returns. Thus, the program
must preserve sufficient information from the outer call’s environment to complete
the evaluation.

The definition for the function fact4 above is backward recursive because
the recursive application fact4 (n-1) in the second leg is embedded within the
expression n * fact4 (n-1). During execution, the multiplication must be done
after return. The program must “remember” (at least) the value of parameter n
for that call.

A compiler can translate a backward linear recursion into a loop, but the
translation may require the use of a stack to store the program’s state (i.e., the
values of the variables and execution location) needed to complete the evaluation
of the expression.
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Often when we design an algorithm, the first functions we come up with are
backward recursive. They often correspond directly to a convenient recurrence
relation. It is often useful to convert the function into an equivalent one that
evaluates more efficiently.

3.4.2 Forward recursion

A function definition is forward recursive if the recursive application is not
embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists.
During execution, significant work is done as the recursive calls are made (e.g.,
in the argument list of the recursive call).

The definition for the auxiliary function factIter below has two integer argu-
ments. The first argument is the number whose factorial is to be computed. The
second argument accumulates the product incrementally as recursive calls are
made.

The recursive application factIter (n-1) (n*r) in the second leg is on the
outside of the expression evaluated for return. The other leg of factIter and
fact6 itself are nonrecursive.

fact6 :: Int -> Int
fact6 n = factIter n 1

factIter :: Int -> Int -> Int
factIter 0 r = r
factIter n r | n > 0 = factIter (n-1) (n*r)

What are the precondition and postcondition for factIter n r?

To avoid termination, factIter n r requires n >= 0. Its postcondition is that:

factIter n r = r * fact(n)

How do we know that factIter n r terminates?

Argument n of the recursive leg is at least 1 and decreases by 1 on each recursive
call.

What is the time and space complexity of factIter n r?

Function factIter n r has a time complexity O(n). But, if the compiler
converts the factIter recursion to a loop, the time complexity’s constant factor
should be smaller than that of fact4.

As shown, factIter n r has space complexity of O(n). But, if the compiler
does an innermost reduction on the second argument (because its value will
always be needed), then the space complexity of factIter becomes O(1).
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3.4.3 Tail recursion

A function definition is tail recursive if it is both forward recursive and linear
recursive. In a tail recursion, the last action performed before the return is a
recursive call.

The definition of the function factIter above is thus tail recursive.

Tail recursive definitions are relatively straightforward to compile into efficient
loops. There is no need to save the states of unevaluated expressions for higher
level calls; the result of a recursive call can be returned directly as the caller’s
result. This is sometimes called tail call optimization (or “tail call elimination”
or “proper tail calls”).

In converting the backward recursive function fact4 to a tail recursive auxiliary
function, we added the parameter r to factIter. This parameter is sometimes
called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of
the computation incrementally for return when the recursion terminates. In
factIter, this “state” passed from one “iteration” to the next enables us to
convert a backward recursive function to an “equivalent” tail recursive one.

Function factIter defines a more general function than fact4. It computes
a factorial when we initialize the accumulator to 1, but it can compute some
multiple of the factorial if we initialize the accumulator to another value. However,
the application of factIter in fact6 gives the initial value of 1 needed for
factorial.

Consider auxiliary function fibIter used by function fib2 below. This function
adds two “accumulating parameters” to the backward nonlinear recursive function
fib to convert the nonlinear (tree) recursion into a tail recursion. This technique
works for Fibonacci numbers, but the same technique will not work in all cases.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Here we use type inference for fibIter. Function fibIter could be declared

fibIter :: Int -> Int -> Int -> Int

but it was not necessary because Haskell can infer the type from the types
involved in its defining expressions.

What are the precondition and postcondition for fibIter n p q?

To avoid termination, fibIter n p q requires n >= 0. When the precondition
holds, its postcondition is:
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fibIter n p q = Fibonacci(n) + (p + q - 1)

If called with p and q set to 0 and 1, respectively, then fibIter returns:

Fibonacci(n)

How do we know that fibIter n p q terminates?

The recursive leg of fibIter n p q is only evaluated when n > 0. On the
recursive call, that argument decreases by 1. So eventually the computation
reaches the base case.

What are the time and space complexities of fibIter?

Function fibIter has a time complexity of O(n) in contrast to O(fib(n)) for
fib. This algorithmic speedup results from the replacement of the very expen-
sive operation fib(n-1) + fib(n-2) at each level in fib by the inexpensive
operation p + q (i.e., addition of two numbers) in fibIter.

Without tail call optimization, fibIter n p q has space complexity of O(n).
However, tail call optimization (including an innermost reduction on the q
argument) can convert the recursion to a loop, giving O(1) space complexity.

When combined with tail-call optimization and innermost reduction of strict
arguments, a tail recursive function may be more efficient than the equivalent
backward recursive function. However, the backward recursive function is often
easier to understand and, as we see in a later chapter, to reason about.

3.5 Logarithmic Recursion

We can define the exponentiation operation ˆ in terms of multiplication as follows
for integers b and n >= 0:

bˆn =
∏i=n

i=1 b

In this subsection, we develop Haskell functions for exponentiation, but we also
briefly examine how to code similar recursive functions in other programming
languages.

3.5.1 Haskell

A backward recursive exponentiation function expt, shown below in Haskell,
raises a number to a nonnegative integer power.

expt :: Integer -> Integer -> Integer
expt b 0 = 1
expt b n

| n > 0 = b * expt b (n-1) -- backward rec
| otherwise = error (
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"expt not defined for negative exponent "
++ show n )

Here we use the unbounded integer type Integer for the parameters and return
value.

Note that the recursive call of expt does not change the value of the parameter
b.

Consider the following questions relative to expt.

• What are the precondition and postcondition for expt b n?

• How do we know that expt b n terminates?

• What are the time and space complexities of expt b n (ignoring any
additional costs of processing the unbounded integer type)?

We can define a tail recursive auxiliary function exptIter by adding a new
parameter to accumulate the value of the exponentiation incrementally. We can
define exptIter within a function expt2, taking advantage of the fact that the
base b does not change. This is shown below.

expt2 :: Integer -> Integer -> Integer
expt2 b n | n < 0 = error (

"expt2 not defined for negative exponent
"

++ show n )
expt2 b n = exptIter n 1

where exptIter 0 p = p
exptIter m p = exptIter (m-1) (b*p) -- tail rec

Consider the following questions relative to expt2.

• What are the precondition and postcondition for exptIter n p?

• How do we know that exptIter n p terminates?

• What are the time and space complexities of exptIter n p?

The exponentiation function can be made computationally more efficient by
squaring the intermediate values instead of iteratively multiplying. We observe
that:

b^n = b^(n/2)^2 if n is even
b^n = b * b^(n-1) if n is odd

Function expt3 below incorporates this observation into an improved algorithm.
Its time complexity is O(log(n)) and space complexity is O(log(n)).

expt3 :: Integer -> Integer -> Integer
expt3 _ n | n < 0 = error (

"expt3 not defined for negative exponent "
++ show n )
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expt3 b n = exptAux n
where exptAux 0 = 1

exptAux n
| even n = let exp = exptAux (n `div` 2) in

exp * exp -- backward rec
| otherwise = b * exptAux (n-1) -- backward rec

Here we are use two features of Haskell we have not used in the previous examples.

• Boolean function even returns True if and only if its integer argument is
an even number. Similarly, odd returns True when its argument is an odd
number.

• The let clause introduces exp as a local definition within the expression
following in keyword, that is, within exp * exp.

The let feature allows us to introduce new definitions in a bottom-up
manner–first defining a symbol and then using it.

Consider the following questions relative to expt3.

• What are the precondition and postcondition expt3 b n?

• How do we know that exptAux n terminates?

• What are the time and space complexities of exptAux n?

We express the functions in this chapter in Haskell, but they are adapted from
the classic textbook Structure and Interpretation of Computer Programs (SICP)
by Abelman and Sussman, which used Scheme.

Now let’s look at what the expt3 function looks like in Scheme and other
languages.

3.5.2 Scheme

Below is the Scheme language program for exponentiation similar to to expt3
(called fast-expt in SICP). Scheme, a dialect of Lisp, is an impure, eagerly
evaluated functional language with dynamic typing.

(define (expt3 b n)
(cond
((< n 0) (error `expt3 "Called with negative exponent"))
(else (expt_aux b n))))

(define (expt_aux b n)
(cond
((= n 0) 1)
((even? n) (square (expt3 b (/ n 2))))
(else (* b (expt3 b (- n 1))))))

16



(define (square x) (* x x))

(define (even? n) (= (remainder n 2) 0))

Scheme (and Lisp) represents both data and programs as s-expressions (nested
list structures) enclosed in balanced parentheses. In the case of executable
expressions, the first element of the list may be operator. For example, consider:

(define (square x) (* x x))

The define operator takes two arguments:

• a symbol being defined, in this case a function signature (square x) for a
function named square with one formal parameter named x

• an expression defining the value of the symbol, in this case the expression
(* x x) that multiplies formal parameter x by itself and returns the result

The define operator has the side effect of adding the definition of the symbol
to the environment. That is, square is introduced as a one argument function
with the value denoted by the expression (* x x).

The conditional expression cond gives an if-then-elseif expression that evaluates
a sequence of predicates until one evaluates to “true” value and then returns the
paired expression. The else at the end always evaluates to “true”.

The above Scheme code defines the functions square, the exponentiation function
expt3, and the logical predicate even?. It uses the primitive Scheme functions
-, *, /, remainder, and = (equality).

We can evaluate the Scheme expression (expt 2 10) using a Scheme interpreter
(as I did using DrRacket) and get the value 1024.

Although Haskell and Scheme are different in many ways – algebraic versus s-
expression syntax, static versus dynamic typing, lazy versus eager evaluation (by
default), always pure versus sometimes impure functions, etc. – the fundamental
techniques we have examined in Haskell still apply to Scheme and other languages.
We can use a substitution model, consider preconditions and termination, use
tail recursion, and take advantage of first-class and higher-order functions.

Of course, each language offers a unique combination of features that can be
exploited in our programs. For example, Scheme programmers can leverage
its runtime flexibility and powerful macro system; Haskell programmers can
build on its safe type system, algebraic data types, pattern matching, and other
features.

Let’s now consider other languages.

The Racket Scheme code for this subsection is in file expt3.rkt.
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3.5.3 Elixir

The language Elixir is a relatively new language that executes on the Erlang
platform (called the Erlang Virtual Machine or BEAM). Elixir is an eagerly
evaluated functional language with strong support for message-passing concurrent
programming. It is dynamically typed and is mostly pure except for input/output.
It has pattern-matching features similar to Haskell.

We can render the expt3 program into a sequential Elixir program as follows.

def expt3(b,n) when is_number(b) and is_integer(n)
and n >= 0 do

exptAux(b,n)
end

defp exptAux(_,0) do 1 end

defp exptAux(b,n) do
if rem(n,2) == 0 do # i.e. even
exp = exptAux(b,div(n,2))
exp * exp # backward rec

else # i.e. odd
b * exptAux(b,n-1) # backward rec

end
end

This code occurs within an Elixir module. The def statement defines a function
that is exported from the module while defp defines a function that is private
to the module (i.e., not exported).

A definition allows the addition of guard clauses following when (although
they cannot include user-defined function calls because of restrictions of the
Erlang VM). In function expt3, we use guards to do some type checking in this
dynamically typed language and to ensure that the exponent is nonnegative.

Private function exptAux has two functions bodies. As in Haskell, the body is
selected using pattern matching proceeding from top to bottom in the module.
The first function body with the header exptAux(_,0) matches all cases in
which the second argument is 0. All other situations match the second header
exptAux(b,n) binding parameters b and n to the argument values.

The functions div and rem denote integer division and remainder, respectively.

The Elixir = operator is not an assignment as in imperative languages. It is a
pattern-match statement with an effect similar to let in the Haskell function.

Above the expression exp = exptAux(b,div(n,2)) evaluates the recursive call
and then binds the result to new local variable named exp. This value is used in
the next statement to compute the return value exp * exp.
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Again, although there are significant differences between Haskell and Elixir, the
basic thinking and programming styles learned for Haskell are also useful in Elixir
(or Erlang). These styles are also key to use of their concurrent programming
features.

The Elixir code for this subsection is in file expt.ex.

3.5.4 Scala

The language Scala is a hybrid functional/object-oriented language that executes
on the Java platform (i.e., on the Java Virtual Machine or JVM). Scala is an
eagerly evaluated language. It allows functions to be written in a mostly pure
manner, but it allows intermixing of functional, imperative, and object-oriented
features. It has a relatively complex static type system similar to Java, but it
supports type inference (although weaker than that of Haskell). It interoperates
with Java and other languages on the JVM.

We can render the exponentiation function expt3 into a functional Scala program
as shown below. This uses the Java/Scala extended integer type BigInt for the
base and return values.

def expt3(b: BigInt, n: Int): BigInt = {

def exptAux(n1: Int): BigInt = // b known from outer
n1 match {
case 0 => 1
case m if (m % 2 == 0) => // i.e. even
val exp = exptAux(m/2)
exp * exp // backward rec

case m => // i.e. odd
b * exptAux(m-1) // backward rec

}

if (n >= 0)
exptAux(n)

else
sys.error ("Cannot raise to negative power " + n )

}

The body of function expt3 uses an if-else expression to ensure that the
exponent is non-negative and then calls exptAux to do the work.

Function expt3 encloses auxiliary function exptAux. For the latter, the pa-
rameters of expt3 are in scope. For example, exptAux uses b from expt3 as a
constant.

Scala supports pattern matching using an explicit match operator in the form:
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selector match { alternatives }

It evaluates the selector expression and then choses the first alternative pattern
that matches this value, proceedings top to botton, left to right. We write the
alternative as

case pattern => expression

or with a guard as:

case pattern if boolean_expression => expression

The expression may be a sequence of expressions. The value returned is the
value of the last expression evaluated.

In this example, the match in exptAux could easily be replaced by an if - else
if - else expression because it does not depend upon complex pattern matching.

In Haskell, functions are automatically curried. In Scala, we could alternatively
define expt3 in curried form using two argument lists as follows:

def expt3(b: BigInt)(n: Int): BigInt = ...

Again, we can use most of the functional programming methods we learn for
Haskell in Scala. Scala has a few advantages over Haskell such as the ability to
program in a multiparadigm style and interoperate with Java. However, Scala
tends to be more complex and verbose than Haskell. Some features such as type
inference and tail recursion are limited by Scala’s need to operate on the JVM.

The Scala code for this subsection is in file exptBigInt2.scala.

3.5.5 Lua

Lua is a minimalistic, dynamically typed, imperative language designed to be
embedded as a scripting language in other programs, such as computer games.
It interoperates well with standard C and C++ programs.

We can render the exponentiation function expt3 into a functional Lua program
as shown below.

local function expt3(b,n)

local function expt_aux(n) -- b known from outer
if n == 0 then
return 1

elseif n % 2 == 0 then -- i.e. even
local exp = expt_aux(n/2)
return exp * exp -- backward recursion

else -- i.e. odd
return b * expt_aux(n-1) -- backward recursion

end
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end

if type(b) == "number" and type(n) == "number" and n >= 0 and
n == math.floor(n) then

return expt_aux(n,1)
else
error("Invalid arguments to expt: " ..

tostring(b) .. "^" .. tostring(n))
end

end

Like the Scala version, we define the auxiliary function expt_aux inside of
function expt3, limiting its scope to the outer function.

This function uses with Lua version 5.2. In this and earlier versions, the only
numbers are IEEE standard floating point. As in the Elixir version, we make
sure the arguments are numbers with the exponent argument being nonnegative.
Given that the numbers are floating point, the function also ensures that the
exponent is an integer.

Auxiliary function expt_aux does the computational work. It differentiates
among the three cases using an if - elseif - else structure. Lua does not have
a switch statement or pattern matching capability.

Lua is not normally considered a functional language, but it has a number of
features that support functional programming – in particular, first-class and
higher order functions and tail call optimization.

In many ways, Lua is semantically similar to Scheme, but instead of having the
Lisp-like hierarchical list as its central data structure, Lua provides an efficient,
mutable, associative data structure called a table (somewhat like a hash table
or map in other languages). Lua does not support Scheme-style macros in the
standard language.

Unlike Haskell, Elixir, and Scala, Lua does not have builtin immutable data
structures or pattern matching. Lua programs tend to be relatively verbose. So
some of the usual programming idioms from functional languages do not fit Lua
well.

The Lua code for this subsection is in file expt.lua.

3.5.6 Elm

Elm is a new functional language intended primarily for client-side Web pro-
gramming. It is currently compiled into JavaScript, so some aspects are limited
by the target execution environment. For example, Elm’s basic types are those
of JavaScript. So integers are actually implemented as floating point numbers.
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Elm has a syntax and semantics that is similar to, but simpler than, Haskell. It
has a Haskell-like let construct for local definitions but not a where construct.
It also limits pattern matching to structured types.

Below is an Elm implementation of an exponentiation function similar to the
Haskell expt3 function, except it is limited to the standard integers Int. Operator
// denotes the integer division operation and % is remainder operator.

expt3 : Int -> Int -> Int
expt3 b n =

let
exptAux m =

if m == 0 then
1

else if m % 2 == 0 then
let

exp = exptAux (m // 2)
in

exp * exp -- backward rec
else

b * exptAux (m-1) -- backward rec
in

if n < 0 then
0 -- error?

else
exptAux n

One semantic difference between Elm and Haskell is that Elm functions must
be total–that is, return a result for every possible input. Thus, this simple
function extends the definition of expt3 to return 0 for a negative power. An
alternative would be to have expt3 return a Maybe Int type instead of Int. We
will examine this feature in Haskell later.

The Elm code for this subsection is in file expt.elm.

3.6 Conclusion

As we have seen in this chapter, we can develop efficient programs using functional
programming and the Haskell language. These may require use to think about
problems and programming a bit differently than we might in an imperative
or object-oriented language. However, the techniques we learn for Haskell are
usually applicable whenever we use the functional paradigm in any language.
The functional way of thinking can also improve our programming in more
traditional imperative and object-oriented languages.
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3.7 Exercises

1. Show the reduction of the expression fib 4 using the substitution model.

2. Show the reduction of the expression expt 4 3 using the substitution
model.

3. Answer the questions (precondition, postcondition, termination, time
complexity, space complexity) in the subsection about expt.

4. Answer the questions in the subsection about exptAux

5. Answer the questions in the subsection about expt.

6. Develop a recursive function in Java, C#, Python, or C++ that has the
same functionality as expt3.

For each of the following exercises, develop a Haskell program. For each function,
informally argue that it terminates and give Big-O time and space complexities.
Also identify any preconditions necessary to guarantee correct operation. Take
care that special cases and error conditions are handled in a reasonable way.

7. Develop a backward recursive function sumTo such that sumTo n computes
the sum of the integers from 1 to n for n >= 0.

8. Develop a tail recursive function sumTo' such that sumTo' n computes the
sum of the integers from 1 to n for n >= 0.

9. Develop a backward recursive function sumFromTo such that sumFromTo m
n computs the sum of the integers from m to n for m <= n.

10. Develop a tail recursive function sumFromTo' such that sumFromTo' m n
computes the sum of the integers from m to n for m <= n.

11. Suppose we have functions succ (successor) and pred (predecessor) defined
as follows:

succ, pred :: Int -> Int
succ n = n + 1
pred n = n - 1

Develop a function add such that add m n computes m + n. Function add
cannot use the integer addition or subtraction operations but can use the
succ ad pred functions above.

12. Develop a function acker to compute Ackermann’s function, which is
function A defined as follows:

A(m, n) = n + 1, if m = 0
A(m, n) = A(m− 1, 1), if m > 0 and n = 0
A(m, n) = A(m− 1, A(m, m− 1)), if m > 0 and n > 0
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13. Develop a function hailstone to implement the following function:

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone 3
hailstone 10
hailstone 5
hailstone 16
hailstone 8
hailstone 4
hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

14. Develop the exponentiation function expt4 that is similar to expt3 but is
tail recursive.

15. Develop the following group of functions.

• test such that test a b c is True if and only if a <= b and no
integer is the range from a to b inclusive is divisible by c.

• prime such that prime n is True if and only if n is a prime integer.

• nextPrime such that nextPrime n returns the next prime integer
greater than n

16. Develop function binom to compute binomial coefficients. That is, binom
n k returns

(
n
k

)
for integers n >= 0 and 0 <= k <= n.

TODO: Add more exercises for the techniques and features introduced in this
section.
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3.9 Terms and Concepts

Referential transparency, redex, reduction strategies (leftmost vs. rightmost,
innermost vs. outermost), string and graph reduction models, time and space
complexity, termination. preconditions, postconditions, recursion styles (lin-
ear vs. nonlinear, backward vs. forward, tail, and logarithmic), correctness
(precondition, postcondition, and termination), efficiency estimation (time and
space complexity), transformations to improve efficiency (auxiliary function,
accumulator)
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