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2 Basic Haskell Functional Programming

2.1 Chapter Introduction

This chapter introduces the basic features of the Haskell language needed for
programming using first-order functions, primitive data types, and tuples. The
goal is for the students to be able to use these features to develop small Haskell
programs.

Upon successful completion of this chapter, students should be able to:

1. describe the basic syntax and semantics of first-order Haskell functions

2. describe the basic Haskell data types

3. execute Haskell programs from the REPL

4. develop first-order Haskell functional programs using recursion and the
primitive data types and tuples

5. apply top-down refinement and data abstraction to develop Haskell modules

6. relate the basic Haskell features to similar features in other languages

2.2 Defining Our First Haskell Functions

Let’s look at our first function definition in the Haskell language, a program to
implement the factorial function for natural numbers.

The Haskell source file Fact.hs holds the Haskell function definitions for this
section. The source file TestFact.hs gives a simple test script.

2.2.1 Factorial function specification

We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments. We can define fact using the
product operator as follows:

fact(n) =
∏i=n

i=1 i

For example,

fact(4) = 1× 2× 3× 4.

By definition

fact(0) = 1
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which is the identity element of the multiplication operation.

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n− 1), if n ≥ 1

Since the domain of fact’ is the set of natural numbers, a set over which induction
is defined, we can easily see that this recursive definition is well defined.

• For n = 0, the base case, the value is simply 1.

• For n ≥ 1, the value of fact’(n) is recursively defined in terms of fact’(n−1).
The argument of the recursive application decreases toward the base case.

In a previous chapter, we proved that fact(n) = fact’(n) by mathematical
induction.

The Haskell functions defined in the following subsections must compute fact(n)
when applied to argument value n.

2.2.2 Factorial function using if-then-else: fact1

One way to translate the recursive definition fact’ into Haskell is the following:

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
else

n * fact1 (n-1)

• The first line above is the type signature for function fact1. In general,
type signatures have the syntax object :: type.

Haskell type names begin with an uppercase letter.

The above defines object fact1 as a function (denoted by the -> symbol)
that takes one argument of type integer (denoted by the first Int) and
returns a value of type integer (denoted by the last Int).

Haskell does not have a built-in natural number type. Thus we choose
type Int for the argument and result of fact1.

The Int data type is a bounded integer type, usually the integer data
type supported directly by the host processor (e.g., 32- or 64-bits on most
current processors), but it is guaranteed to have the range of at least a
30-bit, two’s complement integer (−229 to 229).

• The declaration for the function fact1 begins on the second line. Note
that it is an equation of the form
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fname parms = body

where fname is the function’s name, parms are the function’s parameters,
and body is an expression defining the function’s result.

Function and variable names begin with lowercase letters optionally followed
by a sequence of characters each of which is a letter, a digit, an apostrophe
(') (sometimes pronounced “prime”), or an underscore (_).

A function may have zero or more parameters. The parameters are listed
after the function name without being enclosed in parentheses and without
commas separating them.

The parameter names may appear in the body of the function. In the eval-
uation of a function application the actual argument values are substituted
for parameters in the body.

• Above we define the body function fact1 to be an if-then-else expression.
This kind of expression has the form

if condition then expression1 else expression2

where

condition is a Boolean expression, that is, an expression of Haskell
type Bool, which has either True or False as its value

expression1 is the expression that is returned when the condition
is True

expression2 is the expression (with the same type as expression1 )
that is returned when the condition is False

Evaluation of the if-then-else expression in fact1 yields the value 1 if
argument n has the value 0 (i.e., n == 0) and yields the value n * fact1
(n-1) otherwise.

• The else clause includes a recursive application of fact1. The whole
expression (n-1) is the argument for the recursive application, so we
enclose it in parenthesis.

The value of the argument for the recursive application is less than the
value of the original argument. For each recursive application of fact to a
natural number, the argument’s value thus moves closer to the termination
value 0.

• Unlike most conventional languages, the indentation is significant in Haskell.
The indentation indicates the nesting of expressions.

For example, in fact1 the n * fact1 (n-1) expression is nested inside
the else clause of the if-then-else expression.

• This Haskell function does not match the mathematical definition given
above. What is the difference?
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Notice the domains of the functions. The evaluation of fact1 will go into
an “infinite loop” and eventually abort when it is applied to a negative
value.

In Haskell there is only one way to form more complex expressions from simpler
ones: apply a function.

Neither parentheses nor special operator symbols are used to denote function
application; it is denoted by simply listing the argument expressions following
the function name. For example, a function f applied to argument expressions x
and y is written in the following prefix form:

f x y

However, the usual prefix form for a function application is not a convenient
or natural way to write many common expressions. Haskell provides a helpful
bit of syntactic sugar, the infix expression. Thus instead of having to write the
addition of x and y as

add x y

we can write it as

x + y

as we have since elementary school. Here the symbol + represents the addition
function.

Function application (i.e., juxtaposition of function names and argument expres-
sions) has higher precedence than other operators. Thus the expression f x +
y is the same as (f x) + y.

2.2.3 Factorial function using guards: fact2

An alternative way to differentiate the two cases in the recursive definition is to
use a different equation for each case. If the Boolean guard (e.g., n == 0) for an
equation evaluates to true, then that equation is used in the evaluation of the
function. A guard is written following the | symbol as follows:

fact2 :: Int -> Int
fact2 n

| n == 0 = 1
| otherwise = n * fact2 (n-1)

Function fact2 is equivalent to the fact1. Haskell evaluates the guards in a
top-to-bottom order. The otherwise guard always succeeds; thus it’s use above
is similar to the trailing else clause on the if-then-else expression used in
fact1.
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2.2.4 Factorial function using pattern matching: fact3 and fact4

Another equivalent way to differentiate the two cases in the recursive definition
is to use pattern matching as follows:

fact3 :: Int -> Int
fact3 0 = 1
fact3 n = n * fact3 (n-1)

The parameter pattern 0 in the first leg of the definition only matches arguments
with value 0. Since Haskell checks patterns and guards in a top-to-bottom order,
the n pattern matches all nonzero values. Thus fact1, fact2, and fact3 are
equivalent.

To stop evaluation from going into an “infinite loop” for negative arguments, we
can remove the negative integers from the function’s domain. One way to do
this is by using guards to narrow the domain to the natural numbers as in the
definition of fact4 below:

fact4 :: Int -> Int
fact4 n

| n == 0 = 1
| n >= 1 = n * fact4 (n-1)

Function fact4 is undefined for negative arguments. If fact4 is applied to a
negative argument, the evaluation of the program encounters an error quickly
and returns without going into an infinite loop. It prints an error and halts
further evaluation.

We can define our own error message for the negative case using an error call
as in fact4' below.

fact4' :: Int -> Int
fact4' n

| n == 0 = 1
| n >= 1 = n * fact4' (n-1)
| otherwise = error "fact4' called with negative argument"

In addition to displaying the custom error message, this also displays a stack
trace of the active function calls.

2.2.5 Factorial function using a built-in library function: fact5

The four definitions we have looked at so far use recursive patterns similar to
the recurrence relation fact’. Another alternative is to use the library function
product and the list-generating expression [1..n] to define a solution that is
like the function fact:

fact5 :: Int -> Int
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fact5 n = product [1..n]

The list expression [1..n] generates a list of consecutive integers beginning
with 1 and ending with n. We study lists in a later chapter.

The library function product computes the product of the elements of a finite
list.

If we apply fact5 to a negative argument, the expression [1..n] generates an
empty list. Applying product to this empty list yields 0, which is the identity
element for multiplication. Defining fact5 to return 0 is consistent with the
function fact upon which it is based.

Which of the above definitions for the factorial function is better?

Most people in the functional programming community would consider fact4 (or
fact4') and fact5 as being better than the others. The choice between them
depends upon whether we want to trap the application to negative numbers as
an error or to return the value 1.

2.3 Using the Glasgow Haskell Compiler (GHC)

See the Glasgow Haskell Compiler Users Guide for information on the Glasgow
Haskell Compiler (GHC) and its use.

GHCi is an environment for using GHC interactively. That is, it is a REPL
(Read-Evaluate-Print-Loop) command line interface using Haskell. The “Using
GHCi” chapter of the User Guide describes its usage.

Below, we show a GHCi session where we load source code file (module) Fact.hs
and apply the factorial functions to various inputs. The instructor ran this in
a Terminal session on an iMac running macOS 10.12.6 (Sierra) with ghc 8.2.1
installed.

1. Start the REPL.

bash-3.2$ ghci
GHCi, version 8.2.1: http://www.haskell.org/ghc/ :? for help

2. Load module Fact that holds the factorial function definitions. This
assumes the Fact.hs file is in the current directory. The load command
can be abbreviated as just :l.

Prelude> :load Fact
[1 of 1] Compiling Fact ( Fact.hs, interpreted )
Ok, 1 module loaded.

3. Inquire about the type of fact1.

*Fact> :type fact1
fact1 :: Int -> Int
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4. Apply function fact1 to 7, 0, 20, and 21. Note that the factorial of 21
exceeds the Int range.

*Fact> fact1 7
5040
*Fact> fact1 0
1
*Fact> fact1 20
2432902008176640000
*Fact> fact1 21
-4249290049419214848

5. Apply functions fact2, fact3, fact4 and fact5 to 7.

*Fact> fact2 7
5040
*Fact> fact3 7
5040
*Fact> fact4 7
5040
*Fact> fact5 7
5040

6. Apply functions fact1, fact2, and fact3 to -1. All go into an infinite
recursion, eventually terminating with an error when the runtime stack
overflows its allocated space.

*Fact> fact1 (-1)
*** Exception: stack overflow
*Fact> fact2 (-1)
*** Exception: stack overflow
*Fact> fact3 (-1)
*** Exception: stack overflow

7. Apply functions fact4 and fact4' to -1. They quickly return with an
error.

*Fact> fact4 (-1)
*** Exception: Fact.hs:(33,1)-(35,29): Non-exhaustive patterns

in function fact4
*Fact> fact4' (-1)
*** Exception: fact4' called with negative argument
CallStack (from HasCallStack):

error, called at Fact.hs:50:17 in main:Fact

8. Apply function fact5 to -1. It returns a 1 because it is defined for negative
integers.

*Fact> fact5 (-1)
1
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9. Set the +s option to get information about the time and space required
and the +t option to get the type of the returned value.

*Fact> :set +s
*Fact> fact1 20
2432902008176640000
(0.00 secs, 80,672 bytes)
*Fact> :set +t
*Fact> fact1 20
2432902008176640000
it :: Int
(0.00 secs, 80,720 bytes)
*Fact> :unset +s +t
*Fact> fact1 20
2432902008176640000

10. Exit GHCi.

:quit
Leaving GHCi.

Suppose we had set the environment variable EDITOR to our favorite text editor
in the Terminal window. For example, on a Mac OS system, your instructor
might give the following command in shell (or in a startup script such as
.bash_profile):

export EDITOR=Aquamacs

Then the :edit command within GHCi allows us to edit the source code. We
can give a filename or default to the last file loaded.

:edit

Or we could also use a :set command to set the editor within GHCi.

:set editor Aquamacs
...
:edit

See the Glasgow Haskell Compiler Users Guide for more information about use
of GHC and GHCi.

2.4 Surveying the Basic Types

The type system is an important part of Haskell; the compiler or interpreter uses
the type information to detect errors in expressions and function definitions. To
each expression Haskell assigns a type that describes the kind of value represented
by the expression.
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Haskell has both built-in types (defined in the language or its standard libraries)
and facilities for defining new types. In the following we discuss the primary
built-in types. As we have seen, a Haskell type name begins with a capital letter.

In these notes, we sometimes refer to the types Int, Float, Double, Bool, and
Char as being primitive because they likely have direct support in the host
processor’s hardware.

2.4.1 Integers: Int and Integer

The Int data type is usually an integer data type supported directly by the host
processor (e.g., 32- or 64-bits on most current processors), but it is guaranteed
to have the range of at least a 30-bit, two’s complement integer.

The type Integer is an unbounded precision integer type. Unlike Int, host
processors usually do not support this type directly. The Haskell library or
runtime system typically supports this type in software.

Haskell supports the usual integer literals (i.e., constants) and operations such
as +, -, *, <, etc.

For integer division, Haskell provides functions div and rem such that div m
n returns the integral quotient from dividing m by n and rem m n returns the
remainder.

2.4.2 Floating point numbers: Float and Double

The Float and Double data types are usually the single and double precision
floating point numbers supported directly by the host processor.

Haskell floating point literals must include a decimal point; they may be signed
or in scientific notation: 3.14159, 2.0, -2.0, 1.0e4, 5.0e-2, -5.0e-2.

Haskell supports the usual operations on floating point numbers. Division is
denoted by / as usual.

2.4.3 Booleans: Bool

The Bool data type is usually supported directly by the host processor as one
or more contiguous bits.

The Boolean literals are True and False (note capitals). Haskell supports
Boolean operations such as && (and), || (or), and not.

Functions can match against patterns using the Boolean constants. For example,
we could define a function myAnd as follows:
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myAnd :: Bool -> Bool -> Bool
myAnd True b = b
myAnd False _ = False

Above the pattern _ is a wildcard that matches any value but does not bind a
value that can be used on the right-hand-side of the definition.

2.4.4 Characters: Char

The Char data type is usually supported directly by the host processor by one
or more contiguous bytes.

Haskell uses Unicode for its character data type. Haskell supports character
literals enclosed in single quotes—including both the graphic characters (e.g., ’a’,
’0’, and ’Z’) and special codes entered following the escape character backslash
\ (e.g., '\n' for newline, '\t' for horizontal tab, and '\\' for backslash itself).

In addition, a backslash character \ followed by a number generates the corre-
sponding Unicode character code. If the first character following the backslash is
o, then the number is in octal representation; if followed by x, then in hexadecimal
notation; and otherwise in decimal notation.

For example, the exclamation point character can be represented in any of the
following ways: ’!’, '\33', '\o41', '\x21'

2.4.5 Functions: t1 -> t2

If t1 and t2 are types then t1 -> t2 is the type of a function that takes an
argument of type t1 and returns a result of type t2.

Function and variable names begin with lowercase letters optionally followed by
a sequences of characters each of which is a letter, a digit, an apostrophe (')
(sometimes pronounced “prime”), or an underscore (_).

Haskell functions are first-class objects. They can be arguments or results of
other functions or be components of data structures. Multi-argument functions
are curried—that is, treated as if they take their arguments one at a time.

For example, consider the integer addition operation (+). (Surrounding the
binary operator symbol with parentheses refers to the corresponding function.)
In mathematics, we normally consider addition as an operation that takes a pair
of integers and yields an integer result, which would have the type signature

(+) :: (Int,Int) -> Int

In Haskell, we give the addition operation the type

(+) :: Int -> (Int -> Int)

or just
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(+) :: Int -> Int -> Int

since Haskell binds -> from the right.

Thus (+) is a one argument function that takes some Int argument and returns a
function of type Int -> Int. Hence, the expression ((+) 5) denotes a function
that takes one argument and returns that argument plus 5.

We sometimes speak of this (+) operation as being partially applied (i.e., to one
argument instead of two).

This process of replacing a structured argument by a sequence of simpler ones
is called currying, named after American logician Haskell B. Curry who first
described it.

The Haskell library, called the standard prelude (or just Prelude), contains a
wide range of predefined functions including the usual arithmetic, relational, and
Boolean operations. Some of these operations are predefined as infix operations.

2.4.6 Tuples: (t1,t2,...,tn)

If t1, t2, · · ·, tn are types, where n is finite and n >= 2, then is a type consisting
of n-tuples where the various components have the type given for that position.

Each element in a tuple may have different types. The number of elements in a
tuple is fixed.

Examples of tuple values with their types include the following:

('a',1) :: (Char,Int)
(0.0,0.0,0.0) :: (Double,Double,Double)
(('a',False),(3,4)) :: ((Char, Bool), (Int, Int))

We can also define a type synonym using the type declaration and the use the
synonym in further declarations as follows:

type Complex = (Float,Float)
makeComplex :: Float -> Float -> Complex
makeComplex r i = (r,i)`

A type synonym does not define a new type, but it introduces an alias for an
existing type. We can use Complex in declarations, but it has the same effect
as using (Float,Float) expect that Complex provides better documentation of
the intent.

2.4.7 Lists: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
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notation such as [t] to denote a list of zero or more elements of type t.

A list literal is a comma-separated sequence of values enclosed between [ and ].
For example, [] is an empty list and [1,2,3] is a list of the first three positive
integers in increasing order.

We will look at programming with lists in a later chapter.

2.4.8 Strings: String

In Haskell, a string is just a list of characters. Thus Haskell defines the data
type String as a type synonym :

type String = [Char]

We examine lists and strings in a later chapter, but, because we use strings in a
few examples in this subsection, let’s consider them briefly.

A String literal is a sequence of zero or more characters enclosed in double
quotes, for example, "Haskell programming".

Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

For example, the string literal "Hotty\nToddy!\n" is a string that has two
newline characters embedded.

Also the string literal "\12\&3" represents the two-element list ['\12','3'].

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings. We look at manipulating lists and strings in
later chapters of these notes.

2.5 Using Top-Down Stepwise Refinement

As we saw in a previous chapter, there are two processes of abstraction in
program design and implementation.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

This section focuses on procedural abstraction. Later sections focus on data
abstraction.

A useful and intuitive design process for a small program is to begin with a
high-level solution and incrementally fill in the details. We call this process
top-down stepwise refinement. Here we introduce it with an example.
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2.5.1 Developing a square root package

Consider the problem of computing the nonnegative square root of a nonnegative
number x. Mathematically, we want to find the number y such that

y ≥ 0 and y2 = x.

A common algorithm in mathematics for computing the above y is to use
Newton’s method of successive approximations, which has the following steps
for square root:

1. Guess at the value of y.
2. If the current approximation (guess) is sufficiently close (i.e. good enough),

return it and stop; otherwise, continue.
3. Compute an improved guess by averaging the value of the guess y and x/y,

then go back to step 2.

To encode this algorithm in Haskell, we work top down to decompose the problem
into smaller parts until each part can be solved easily. We begin this top-down
stepwise refinement by defining a function with the type signature:

sqrtIter :: Double -> Double -> Double

We choose type Double (double precision floating point) to approximate the
real numbers. Thus we can encode step 2 of the above algorithm in Haskell as
follows:

sqrtIter guess x
| goodEnough guess x = guess
| otherwise = sqrtIter (improve guess x) x

We define sqrtIter to take two arguments–the current approximation guess
and number x for which we need the square root. We have two cases:

• When the current approximation guess is sufficiently close to x, we return
guess.

We abstract this decision into a separate function goodEnough with type
signature:

goodEnough :: Double -> Double -> Bool

• When the approximation is not yet close enough, we reduce the problem
to another application of sqrtIter itself to an improved approximation.

We abstract the improvement process into a separate function improve
with type signature:

improve :: Double -> Double -> Double

To ensure termination of sqrtIter, the argument (improve guess x) on
the recursive call must get closer to a value that satisfies its base case.
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The function improve takes the current guess and x and carries out step 3 of
the algorithm, thus averaging guess and x/guess, as follows:

improve :: Double -> Double -> Double
improve guess x = average guess (x/guess)

Here we abstract average into a separate function as follows:

average :: Double -> Double -> Double
average x y = (x + y) / 2

The new guess is closer to the square root than the previous guess. Thus the
algorithm will terminate assuming a good choice for function goodEnough, which
guards the base case of the sqrtIter recursion.

How should we define goodEnough? Given that we are working with the limited
precision of computer floating point arithmetic, it is not easy to choose an
appropriate test for all situations. Here we simplify this and use a tolerance of
0.001.

We thus postulate the following definition for goodEnough:

goodEnough :: Double -> Double -> Bool
goodEnough guess x = abs (square guess - x) < 0.001

In the above, abs is the built-in absolute value function defined in the standard
Prelude library. We define square as the following simple function (but could
replace it by just guess * guess):

square :: Double -> Double
square x = x * x

What is a good initial guess? It is sufficient to just use 1. So we can define an
overall square root function sqrt' as follows:

sqrt' :: Double -> Double
sqrt' x | x >= 0 = sqrtIter 1 x

(A square root function sqrt is defined in the Prelude library, so a different
name is needed to avoid the name clash.)

2.5.2 Making the package a Haskell module

We can make this package into a Haskell module by putting the definitions in
a file (e.g., named Sqrt.hs) and adding a module header at the beginning as
follows:

module Sqrt
(sqrt')

where
-- give the definitions above for functions sqrt',
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-- sqrtIter, improve, average, and goodEnough,

The header gives the module the name Sqrt and defines the names in parenthesis
as being exported to other modules that import this module. The other symbols
(e.g., sqrtIter, goodEnough) are local to (i.e., hidden inside) the module.

In the above Haskell code, the symbol “--” denotes the beginning of an end-
of-line comment. All text after that symbol is text ignored by the Haskell
compiler.

The Haskell module for the Square root case study is in file Sqrt.hs. Limited
testing code is in module TestSqrt.hs.

2.5.3 Top-down stepwise refinement

The program design strategy known as top-down stepwise refinement is a rel-
atively intuitive design process that has long been applied in the design of
structured programs in imperative procedural languages. It is also useful in the
functional setting.

In Haskell, we can apply top-down stepwise refinement as follows.

1. Start with a high-level solution to the problem consisting of one or more
functions. For each function, identify its type signature and functional
requirements (i.e., its inputs, outputs, and termination condition).

Some parts of each function are abstracted as “pseudocode” expressions or
as-yet-undefined function calls.

2. Choose one of the incomplete parts. Consider its type signature and
functional requirements. Refine the incomplete part by breaking it into
subparts or, if simple, defining it directly in terms of Haskell expressions
(including calls to the Prelude or other available library functions).

When refining an incomplete part, consider the various options according to
the relevant design criteria (e.g., time, space, generality, understandability,
elegance, etc.)

The refinement of the function may require a refinement of the data being
passed. If so, back up in the refinement process and readdress previous
design decisions as needed.

If it not possible to design an appropriate refinement, back up in the
refinement process and readdress previous design decisions.

3. Continue step 2 until all parts are fully defined in terms of Haskell code
and data and the resulting set of functions meets all required criteria.

For as long as possible, we should stay with terminology and notation that is
close to the problem being solved. We can do this by choosing appropriate
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function names and signatures and data types. (In later chapters, we examine
Haskell’s rich set of builtin and user-defined types.)

For stepwise refinement to work well, we must be willing to back up to earlier
design decisions when appropriate. We should keep good documentation of the
intermediate design steps.

The stepwise refinement method can work well for small programs, but it may
not scale well to large, long-lived, general purpose programs. In particular,
stepwise refinement may lead to a module structure in which modules are tightly
coupled and not robust with respect to changes in requirements. A combination
of techniques may be needed to develop larger software systems.

2.6 Using Data Abstraction

A design technique that can help make a program robust with respect to change
in the data is to use data abstraction. As in the previous subsection, let’s begin
with an example.

2.6.1 Rational number arithmetic

For this example, let’s implement a group of Haskell functions to perform rational
number arithmetic, assuming that the Haskell library does not contain such a
data type.

In mathematics we usually write rational numbers in the form x
y where x and y

are integers and y 6= 0.

For now, let’s assume we have a special type Rat to represent rational numbers
and a constructor function

makeRat :: Int -> Int -> Rat

to create a rational number instance from its numerator x and denominator y.
That is, makeRat x y constructs rational number x

y .

Further, let us assume we have selector functions numer and denom with signatures

numer, denom :: Rat -> Int

that each take a Rat argument and return the numerator and denominator,
respectively. That is, they satisfy the equalities:

numer (makeRat x y) == x
denom (makeRat x y) == y

We consider how to implement rational numbers in Haskell later, but for now
let’s look at rational arithmetic using the constructor and selector functions
above.
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Given the knowledge of rational arithmetic from mathematics, we can define the
operations for unary negation, addition, subtraction, multiplication, division,
and equality.

negRat :: Rat -> Rat
negRat x = makeRat (- numer x) (denom x)

addRat, subRat, mulRat, divRat :: Rat -> Rat -> Rat
addRat x y = makeRat (numer x * denom y + numer y * denom x)

(denom x * denom y) -- x + y
subRat x y = makeRat (numer x * denom y - numer y * denom x)

(denom x * denom y) -- x - y
mulRat x y = makeRat (numer x * numer y)

(denom x * denom y) -- x * y
divRat x y = makeRat (numer x * denom y)

(denom x * numer y) -- x / y

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

Above we give the type signatures for all four functions in the same type
declaration by listing them separated by commas.

These functions all use the type Rat, constructor function makeRat, and selector
functions numer and denom assumed above. They do not depend upon any
specific representation for rational numbers.

The above six functions work on rational numbers as a data abstraction defined
by the type Rat, constructor function makeRat, and selector functions numer
and denom.

The goal of a data abstraction is to separate the logical properties of data from
the details of how the data are represented.

2.6.2 Rational number data representation

Now, how can we represent rational numbers?

For this package, we define a type synonym Rat to denote this type:

type Rat = (Int, Int)

For example, (1,7), (-1,-7), (3,21), and (168,1176) all represent 1
7 .

As with any value that can be expressed in many different ways, it is useful to
define a single canonical (or normal) form for representing values in the rational
number type Rat.

It is convenient for us to choose a rational number representation (x,y) that
satisfies the following property, which we call an invariant:
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y > 0, x and y are relatively prime, and zero is denoted uniquely by
(0,1).

By relatively prime, we mean that the two integers have no common divisors
except 1.

By invariant, we mean that the logical assertion always holds for every rational
number created by makeRat and manipulated only by the operations in the
RationalCore and Rational modules.

This representation has the advantage that the magnitudes of the numerator x
and denominator y are kept small, thus reducing problems with overflow arising
during arithmetic operations.

We thus provide a function for constructing rational numbers in this canonical
form. We define constructor makeRat as follows.

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ showRat (x,0) ++ "\n" )
makeRat 0 _ = (0,1)
makeRat x y = (x' `div` d, y' `div` d)

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

Above we use features of Haskell we have not used in the previous examples:

• Instead of leaving the (x,0) case undefined, we define an explicit error
call that returns a custom error message as a String.

• To concatenate two strings, we use the infix ++ (read “append”) operator.
(We discuss ++ in the chapter on lists.)

• Putting backticks (`) around an alphanumeric function name enables us
to use that function as an infix operator. The function div denotes integer
division. Above the `div` operator denotes the integer division function
used in an infix manner.

• The where clause introduces x', y', and d as a local definitions within
the body of makeRat. It can be called from within makeRat but not from
outside the function. In contrast, sqrtIter in the Square Root example is
at the same level as sqrt', so it can be called by other functions (in the
same Haskell module at least).

The where feature allows us to introduce new definitions in a top-down
manner–first using a symbol and then defining it.

• Instead of defining the types of the local definitions x', y', and d, we use
type inference.

These parameterless functions could be declared
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x', y', d :: Int

but it was not necessary because Haskell can infer the types from the types
involved in their defining expressions.

Type inference can be used more broadly in Haskell, but explicit type
declarations should be used for any function called from outside.

The function signum' (similar to the more general function signum in the
Prelude) takes an integer and returns the integer -1, 0, or 1 when the number is
negative, zero, or positive, respectively.

signum' :: Int -> Int
signum' n | n == 0 = 0

| n > 0 = 1
| n < 0 = -1

The function abs' (similar to the more general function abs in the Prelude)
takes an integer and returns its absolute value.

abs' :: Int -> Int
abs' n | n >= 0 = n

| n < 0 = -n

The function gcd' (similar to the more general function gcd in the Prelude)
takes two integers and returns their greatest common divisor.

gcd' :: Int -> Int -> Int
gcd' x y = gcd'' (abs' x) (abs' y)

where gcd'' x 0 = x
gcd'' x y = gcd'' y (x `rem` y)

Prelude operation rem returns the remainder from dividing its first operand by
its second.

Given makeRat defined as above, we can define numer and denom as follows:

numer, denom :: Rat -> Int
numer (x,_) = x
denom (_,y) = y

Finally, to allow rational numbers to be displayed in the normal fractional
representation, we include function showRat in the package. We use function
show, found in the Prelude, here to convert an integer to the usual string format
and use the list operator ++ to concatenate the two strings into one.

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

Unlike Rat, makeRat, numer, and denom, function showRat (as implemented)
does not use knowledge of the data representation, but it is used by makeRat.
We could optimize it slightly by allowing it to access the structure of the tuple
directly.

21



2.6.3 Modularization

There are three groups of functions in this package:

1. the six public rational arithmetic functions negRat, addRat, subRat,
mulRat, divRat, and eqRat

2. the public type Rat, public constructor function makeRat, public selector
functions numer and denom, and string conversion function showRat

3. the private utility functions called only by the second group, but just
reimplementations of Prelude functions anyway

As we have seen, Rat, makeRat, numer, denom, and showRat are the interface to
the data abstraction that hides the information about the representation of the
data. We can encapsulate this group of functions in a Haskell module as follows.
This source code must also be in a file named RationalCore.hs.

module RationalCore
(Rat, makeRat, numer, denom, showRat)

where
-- Rat, makeRat, numer, denom, showRat definitions

We can encapsulate the utility functions in a separate module, which would
enable them to be used by several other modules.

However, given that the only use of the utility functions is within the data
representation module, we choose not to separate them at this time. We leave
them in the data abstraction module. Of course, we could also eliminate them
and use the corresponding Prelude functions directly.

Similarly, negRat, addRat, subRat, mulRat, divRat, and eqRat use the core
data abstraction and, in turn, extend the interface to include rational number
arithmetic operations. We can encapsulate these in another Haskell module that
imports the module giving the data representation. This module must be in a
file named Rational.hs.

module Rational
( Rat, makeRat, numer, denom, showRat, -- from RatioalCore

negRat, addRat, subRat, mulRat, divRat, eqRat )
where

import RationalCore
-- negRat, addRat, subRat, mulRat, divRat, eqRat definitions

Other modules that use the rational number package can import module
Rational.

This modular approach to program design and implementation offers the potential
of scalability and robustness with respect to change.

The key to this information-hiding approach to design is to identify the aspects
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of a software system that are most likely to change from one version to another
and make each a design secret of some module.

The secret of the RationalCore module is the rational number data represen-
tation used. The secret of the Rational module itself is the methods used for
rational number arithmetic.

2.6.4 Alternative rational number data representation

In the rational number data representation above, constructor makeRat creates
pairs in which the two integers are relatively prime and the sign is on the
numerator. Selector functions numer and denom just return these stored values.

An alternative representation is to reverse this approach, as shown in the following
module (in file RationalDeferGCD.hs.)

module RationalDeferGCD
(Rat, makeRat, numer, denom, showRat)

where

type Rat = (Int,Int)

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ showRat (x,0) ++ "\n" )
makeRat 0 y = (0,1)
makeRat x y = (x,y)

numer :: Rat -> Int
numer (x,y) = x' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

denom :: Rat -> Int
denom (x,y) = y' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

This approach defers the calculation of the greatest common divisor until a
selector is called.

The invariant for this rational number representation requires that, for (x,y),
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y 6= 0 and zero is represented uniquely by (0,1).

Furthermore, function numer and denom satisfy the equalities

numer (makeRat x y) == x'
denom (makeRat x y) == y'

where y' > 0, x' and y' are relatively prime, and x
y = x’

y’ .

Question:

What are the advantages and disadvantages of the two data repre-
sentations?

Like module RationalCore, the design secret for module RationalDeferGCD is
the rational number data representation.

Regardless of which approach is used, the definitions of the arithmetic and
comparison functions do not change. Thus the Rational module can import
data representation module RationalCore or RationalDeferGCD.

The figure below shows the dependencies among the modules we have examined
in the rational arithmetic case study.

Module Dependency Diagram for Rational Arithmetic Case Study
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We can consider the RationalCore and RationalDeferGCD modules as two con-
crete instances (Haskell modules) of a more abstract module we call “RationalRep”
in the diagram.

The abstract module “Rational” relies on the abstract module “RationalRep”
for an implemenation of rational numbers. In the Haskell code above, there are
really two versions of the Haskell module Rational that differ only in whether
they import RationalCore or RationalDeferGCD.

We could also replace alias Rat by a user-defined type to get another alternative
definition of “RationalRep”, as long as the interface functions do not have to
work with types other than Int.

2.7 Modular Design and Programming

Now let’s step back from the rational arithmetic case study and consider the
general issues of data abstraction and modular design and programming.

Software engineering pioneer David Parnas defines a module as “a work assign-
ment given to a programmer or group of programmers” [Parnas 1978]. This is a
software engineering view of module.

In a programming language like Haskell, a module is also a program unit defined
with a construct or convention. This is a programming language view of a module.

Ideally, a language’s module features should support the software engineering
module methods.

2.7.1 Information-hiding modules

According to Parnas, the goals of modular design are to [Parnas 1972]:

1. enable programmers to understand the system by focusing on one module
at a time (i.e., comprehensibility).

2. shorten development time by minimizing required communication among
groups (i.e., independent development).

3. make the software system flexible by limiting the ‘number of modules
affected by significant changes (i.e., changeability).

Parnas advocates the use of a principle called information hiding to guide
decomposition of a system into appropriate modules (i.e. work assignments).
He points out that the connections among the modules should have as few
information requirements as possible [Parnas 1972].

In the Parnas approach, an information-hiding module:

• forms a cohesive unit of functionality separate from other modules
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• hides a design decision (its secret) from other modules

• encapsulates an aspect of system likely to change (its secret)

Aspects likely to change independently of each other become secrets of separate
modules. Aspects unlikely to change can become interactions (connections)
among modules.

This approach supports the goal of changeability (goal 2). When care is taken
to design the modules as clean abstractions with well-defined and documented
interfaces, the approach also supports the goals of independent development
(goal 1) and comprehensibility (goal 3).

Information hiding has been absorbed into the dogma of contemporary object-
oriented programming. However, information hiding is often oversimplified as
merely hiding the data and their representations [Weiss 2001].

The secret of a well-designed module may be much more than that. It may include
such knowledge as a specific functional requirement stated in the requirements
document, the processing algorithm used, the nature of external devices accessed,
or even the presence or absence of other modules or programs in the system
[Parnas 1972, 1979, 1985]. These are important aspects that may change as the
system evolves.

2.7.2 Interfaces

It is important for information-hiding modules to have well-defined and stable
interfaces.

According to Britton et al, an interface is a “set of assumptions . . . each
programmer needs to make about the other program . . . to demonstrate the
correctness of his own program” [Britton 1981].

An interface includes the type signature of each function (i.e., name, arguments,
and return value) and the constraints on the environment and argument values
(e.g., the invariants).

An abstract interface is an interface that does not change when one module
implementation is substituted for another [Britton 1981; Parnas 1978]. It
concentrates on module’s essential aspects and obscures incidental aspects that
vary among implementations.

Information-hiding modules and abstract interfaces enable us to design and
build software systems with multiple versions. The information-hiding approach
seeks to identify aspects of a software design that might change from one version
to another and to hide them within independent modules behind well-defined
abstract interfaces.

We can reuse the software design across several similar systems. We can reuse
an existing module implementation when appropriate. When we need a new
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implementation, we can create one by following the specification of the module’s
abstract interface.

2.7.3 Haskell information-hiding modules

As we have seen, in Haskell the module construct can be used to encapsulate an
information-hiding module. The features exported form part of the interface to
the module. One module can import another module, specifying its dependence
on the interface of the other module.

We define each Haskell module in a separate file. The Haskell compiler can
compile a module independently of others except that the modules it depends on
must be previously compiled. The Haskell build and package management tools
cabal-install and stack support Haskell modules as their primary units.

The interface of a Haskell module consists of the names and type signatures of
its exported types and functions plus the constraints on the functions and the
expected properties of the “objects” manipulated.

In the Rational Arithmetic case study, we defined two information-hiding mod-
ules:

1. “RationalRep”, whose secret is how to represent the rational number data
and whose interface consists of the data type Rat, operations (functions)
makeRat, numer, denom, and showRat, and the constraints on these types
and functions

2. “Rational”, whose secret is how to implement the rational number
arithmetic and whose interface consists of operations (functions) negRat,
addRat, subRat, mulRat, divRat, and eqRat, the other module’s interface,
and the constraints on these types and functions

We developed two distinct Haskell modules, RationalCore and RationalDeferGCD,
to implement the “RationalRep” information-hiding module. We developed one
distinct Haskell module, Rational, to implement the “Rational” information-
hiding module. Haskell module Rational can be paired (i.e., by chaning the
import statement) either of the other two variants of “RationalRep”.

Unfortunately, Haskell 2010 has a relatively weak module system that does not
support multiple implementations as well as we might like. There is no way to
declare that multiple Haskell modules have the same interface other than copying
the common code into each module and documenting the interface carefully. We
must also have multiple versions of Rational that differ only in which other
module is imported.

Together the Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and
the Cabal-Install package manager release 2.0 (August 2017) support a new
extension, the Backpack mixin package system. This new system remedies
the above shortcoming. In this new approach, we would define the abstract
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module “RationalRep” as a signature file and require that RationalCore and
RationalDeferGCD conform to it.

Further discussion of this new module system is beyond the scope of this chapter.

2.7.4 Invariants

As we saw in the Rational Arithmetic case study, a module that provides a data
abstraction must ensure that the objects it creates and manipulates maintain
their integrity–always have a valid structure and state. An invariant for the data
abstraction can help us design and implement such objects.

Invariant: A logical assertion that must always true for every “object” created
by the public constructors and manipulated only by the public operations
of the data abstraction.

Often, we separate an invariant into two parts.

Interface invariant: An invariant stated in terms of the public features and
abstract properties of the “object”.

Implementation (representation) invariant: A detailed invariant giving
the required relationships among the internal features of the implementation
of an “object”

An interface invariant is a key aspect of the abstract interface of a module. It is
useful to the users of the module, as well to the developers.

In the Rational Arithmetic case study, the interface invariant for the “Rational-
Rep” abstract module is the following.

For all integers x and nonzero integers y,

numer (makeRat x y) == x'
denom (makeRat x y) == y'

where y' > 0, x' and y' are relatively prime, x
y = x’

y’ and if x' = 0,
then y' = 1.

An implementation invariant guides the developers in the design and implemen-
tation of the internal details of a module. It relates the internal details to the
interface invariant.

We can state an implementation invariant for the RationalCore module as
follows.

For all integers x and nonzero integers y,

makeRat x y == (x',y')

where y' > 0, x' and y' are relatively prime, x
y = x’

y’ and if x' = 0,
then y' = 1.
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The implementation invariant implies the interface invariant. Although makeRat
does quite a bit of work, numer and denom are simple.

We can state an implementation invariant for the RationalDeferGCD module as
follows.

For all integers x and nonzero integers y,

makeRat x y == (x,y)

In this module implementation, makeRat is trivial, thus numer and denom must
do most of the work to establish the interface invariant.

We will return to the invariant concepts in later chapters.

2.7.5 Design criteria for interfaces

What makes a good interface for an information-hiding module?

In designing an interface for a module, we should also consider the following
criteria. Of course, some of these criteria conflict with one another; a designer
must carefully balance the criteria to achieve a good interface design.

Note: These are general principles; they are not limited to Haskell or func-
tional programming. In object-oriented languages, these criteria apply to class
interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The module should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the module.

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the module.

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g., in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g., order and type of arguments),
– behavior (i.e., make operations work similarly).
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Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

The operations should be consistent with good practices for the specific
language being used.

• Reusability: Do not customize modules to specific clients, but make them
general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of an
module so that it remains stable even if the implementation of the module
changes. (That is, it should be an abstract interface for an information-
hiding module as we discussed above.)

• Convenience: Where appropriate, provide additional operations (e.g.,
beyond the complete primitive set) for the convenience of users of the
module. Add convenience operations only for frequently used combinations
after careful study.

We must trade off conflicts among the criteria. For example, we must balance:

• completeness versus simplicity
• reusability versus simplicity
• convenience versus consistency, simplicity, no redundancy, and atomicity

We must also balance these design criteria against efficiency and functionality.

2.8 Exercises

TODO: Add more exercises for the techniques and features introduced in this
section. Make sure what is here still make sense.

For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell function sumsqbig that takes three numbers as argu-
ments and returns the sum of the squares of the two larger numbers. That
is sumsqbig 2.0 1.0 3.0 yields 13.

2. Develop a Haskell function xor that takes two Booleans and returns the
“exclusive-or” of the two values. An exclusive-or operation returns True
when exactly one of its arguments is True and returns False otherwise.

3. Develop a Haskell Boolean function div23n5 such that div23n5 n returns
True if and only if n is divisible by 2 or divisible by 3 but not divisible by
5. That is, div23n5 6 yields True and div23n5 30 yields False.

4. Develop a Haskell function notDiv such that notDiv n d returns True if
and only if integer n is not divisible by d. That is, notDiv 10 5 yields
False and notDiv 11 5 yields True.
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5. Develop a Haskell function mult that takes two natural numbers (i.e.,
nonnegative integers) and returns their product. The function must not
use the multiplication (*) or division (div) operators. Hint: Multiplication
can be done by repeated addition.

6. Develop a Haskell function addTax that takes two Double values such that
addTax c p returns c with a sales tax of p percent added. For example,
addTax 2.0 9.0 returns 2.18.

Also develop a function subTax that is the inverse of addTax. That is,
subTax (addTax c p) p yields c.

7. The time of day can be represented by a tuple (hours,minutes,m) where
m indicates either “AM” or “PM”. Develop a Boolean Haskell function
comesBefore that takes two time-of-day tuples and determines whether
the first is an earlier time than the second.

8. Develop a Haskell function

minf :: (Int -> Int) -> Int

such that minf g returns the smallest integer m such that 0 <= m <=
10000000 and g m == 0 (if such an integer exists).

9. Develop a Haskell module (or modules) for line segments on the two-
dimensional coordinate plane using the rectangular coordinate system.

We can represent a line segment with two points–the starting point and
the ending point. Develop the following Haskell functions:

• constructor newSeg that takes two points and returns a new line
segment

• selectors startPt and endPt that each take a segment and return its
starting and ending points, respectively

We normally represent the plane with a rectangular coordinate system.
That is, we use two axes–an x axis and a y axis–intersecting at a right
angle. We call the intersection point the origin and label it with 0 on both
axes. We normally draw the x axis horizontally and label it with increasing
numbers to the right and decreasing numbers to the left. We also draw the
y axis vertically with increasing numbers upward and decreasing numbers
downward. Any point in the plane is uniquely identified by its x-coordinate
and y-coordinate.

Define a data representation for points in the rectangular coordinate system
and develop the following Haskell functions:

• constructor newPtFromRect that takes the x and y coordinates of a
point and returns a new point

• selectors getx and gety that takes a point and returns the x and y
coordinates, respectively
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• display function showPt that takes a point and returns an appropriate
String representation for the point

Now, using the various constructors and selectors, also develop the Haskell
functions for line segments:

• midPt that takes a line segment and returns the point at the middle
of the segment

• display function showSeg that takes a line segment and returns an
appropriate String representation

Note that newSeg, startPt, endPt, midPt, and showSeg can be imple-
mented independently from how the points are represented.

10. Develop a Haskell module (or modules) for line segments that represents
points using the polar coordinate system instead of the rectangular coordi-
nate system used in the previous exercise.

A polar coordinate system represents a point in the plane by its radial
coordinate r (i.e., the distance from the pole) and its angular coordinate t
(i.e., the angle from the polar axis in the reference direction). We sometimes
call r the magnitude and t the angle.

By convention, we align the rectangular and polar coordinate systems by
making the origin the pole, the positive portion of the x axis the polar
axis, and let the first quadrant (where both x and y are positive) be
the smallest positive angles in the reference direction. That is, with a
traditional drawing of the coordinate systems, we measure and the radial
coordinate r as the distance from the origin measure the angular coordinate
t counterclockwise from the positive x axis.

Using knowledge of trigonometry, we can convert among rectangular coor-
dinates (x,y) and polar coordinates (r,t) using the equations:

x = r * cos(t)
y = r * sin(t)
r = sqrt(x^2 + y^2)
t = arctan2(y,x)

Define a data representation for points in the polar coordinate system and
develop the following Haskell functions:

• constructor newPtFromPolar that takes the magnitude r and angle t
as the polar coordinates of a point and returns a new point

• selectors getMag and getAng that each take a point and return the
magnitude r and angle t coordinates, respectively

• selectors getx and gety that return the x and y components of the
points (represented here in polar coordinates)
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• display functions showPtAsRect and showPtAsPolar to convert the
points to strings using rectangular and polar coordinates, respectively,

Functions newSeg, startPt, endPt, midPt, and showSeg should work as
in the previous exercise.

11. Modify the solutions to the previous two line-segment module exercises to
enable the line segment functions to be in one module that works properly
if composed with either of the two data representation modules. (The
solutions may have already done this.)

12. Modify the solution to the previous line-segment exercise to use the Back-
pack module system.

13. Modify the modules in the previous exercise to enable the line segment
module to work with both data representations in the same program.

14. Modify the solution to the Rational Arithmetic case study to use the
Backpack module system.
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2.10 Terms and Concepts

Factorials, function definition and application, recursion, function domains,
error, if, guards, basic types (Int, Integer, Bool, Char, functions, tuples,
lists, String), type aliases, library (Prelude) functions, REPL, ghci commands
and use, procedural abstraction, top-down stepwise refinement, abstract code,
termination condition for recursion, Newton’s method, Haskell module, module
exports and imports, rational number arithmetic, data abstraction, properties
of data, data representation, invariant, interface invariant, implementation or
representation invariant, canonical or normal forms, information hiding, module
secret, encapsulation, interface, abstract interface, design criteria for interfaces,
software reuse, Haskell where local definition, type inference, use of Haskell mod-
ules to implement information-hiding modules rational number arithmetic, data
abstraction, abstract properties of data, data representation, invariant, interface
invariant, implementation or representation invariant, canonical or normal forms,
information hiding, module secret, encapsulation, interface, abstract interface,
design criteria for interfaces, software reuse, Haskell where local definition, type
inference, use of Haskell modules to implement information-hiding modules
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