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TODO:

• Reorganize to make the chapter more cohesive and coherent.
• Elaborate descriptions of “other paradigms” (procedural, modular,

prototype-based), perhaps adding others (language-oriented, concurrent,
parallel). Give simple examples for these.

• Focus the object orientation more appropriately a Haskell functional pro-
gramming course.

• Better integrate the discussion of abstraction.
• Expand the discussion of relevant mathematics to conver additional math-

ematical and logical concepts needed in these notes such as those used
in specification of preconditions, postconditions, invariants, and abstract
data types.

• Add exercises.
• Update references, terms and concepts

1 Fundamental Concepts

1.1 Chapter Introduction

The goal of this chapter is motivate the concept of functional programming and
relate it to other approaches to programming and to the relevant mathematical
concepts.

Upon successful completion of this chapter, students should be able to:

1. describe the evolution of computers and programming languages since the
1940’s and its impact upon contemporary programming language design
and implementation

2. distinguish among the primary programming paradigms, in particular to
be able to relate functional programming to their previous knowledge of
imperative programming

3. describe other programming paradigms (such as object-oriented and
prototype-based) and relate these to the primary paradigms and their
previous programming experiences

4. understand the abstraction and mathematical concepts that underlie the
functional programming paradigm

Students entering this course should already have sufficient familiarity with
the relevant mathematical concepts from the prerequisite courses. However,
they may need to relate the mathematics with the programming constructs in
functional programming.

Before we look at Haskell programming, let’s consider the development of pro-
gramming languages over the past 70 years, examine the primary programming
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programming paradigms, consider key concepts, and review the related mathe-
matical concepts.

1.2 Evolving Computer Hardware Affects Programming
Languages

To put our study in perspective, let’s examine the effect of computing hardware
evolution on programming languages by considering a series of questions.

When were the first “modern” computers developed? That is, programmable
electronic computers.

Although the mathematical roots of computing go back more than a thousand
years, it is only with the invention of the programmable electronic digital
computer during the World War II era of the 1930s and 1940s that modern
computing began to take shape.

One of the first computers was the ENIAC (Electronic Numerical Integrator
and Computer), developed in the mid-1940s at the University of Pennsylvania.
When construction was completed in 1946, the ENIAC cost about $500,000. In
today’s terms, that is nearly $7,000,000.

It weighed 30 tons, occupied as much space as a small house, and consumed 160
kilowatts of electric power.

Initially, the ENIAC had no main memory. Instead it had 20 accumulators, each
10 decimal digits wide. Later 100 words of core were added.

Similarly, it had no external memory as we now it today. It could read and write
stacks of punch cards.

The ENIAC was not a stored program computer. It was programmed mostly by
connecting cables in plugboards. It took several days of careful work to enter
one program. The program was only changed every few weeks.

Aside: Many of the early programmers were women. This is quite a contrast to
contemporary programming teams that are mostly male. What happened?

The ENIAC and most other computers of that era were designed for military
purposes, such as calculating firing tables for artillery or breaking codes. As
a result, many observers viewed the market for such devices to be quite small.
The observers were wrong!

Electronics technology has improved greatly in 70 years. Today, a computer
with the capacity of the ENIAC would be smaller than a coin from our pockets,
would consume little power, and cost just a few dollars on the mass market.

How have computer systems and their use evolved over the past 70 years?
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• Contemporary processors are much smaller and faster. They use much less
power, cost much less money (when mass produced), and operate much
more reliably.

• Contemporary “main” memories are much larger in capacity, smaller in
physical size, and faster in access speed. They also use much less power,
cost much less money, and operate much more reliably.

• The number of processors per machine has increased from one to many.
First, channels and other co-processors were added, then multiple CPUs.
Today, computer chips for common desktop and mobile applications have
several processors–cores–on each chip, plus specialized processors such
as graphics processing units (GPUs) for data manipulation and parallel
computation. This trend toward multiprocessors will likely continue given
that physics dictates limits on how small and fast we can make computer
processors; to continue to increase in power means increasing parallelism.

• Contemporary external storage devices are much larger in capacity, smaller
in size, faster in access time, and cost less.

• The number of computers available per user has increased from much less
than one to many more than one.

• Early systems were often locked into rooms, with few or no direct connec-
tions to the external world and just a few kinds of input/output devices.
Contemporary systems may be on the user’s desktop or in the user’s back-
pack, be connected to the internet, and have many kinds of input/output
devices.

• The range of applications has increased from a few specialized applications
(e.g., code-breaking, artillery firing tables) to almost all human activities.

• The cost of the human staff to program, operate, and support computer
systems has probably increased somewhat (in constant dollars).

How have these changes affected programming practice?

• In the early days of computing, computers were very expensive and the
cost of the human workers to use them relatively less. Today, the opposite
holds. So we need to maximize human productivity.

• In the early days of computing, the slow processor speeds and small memory
sizes meant that programmers had to control these precious resources to
be able to carry out most routine computations. Although we still need to
use efficient algorithms and data structures and use good coding practices,
programmers can now bring large amounts of computing capacity to bear
on most problems. We can use more computing resources to improve
productivity to program development and maintenance. The size of the
problems we can solve computationally has increased beyond what would
be possible manually.
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• In the early days of computing, multiple applications and users usually
had to share one computer. Today, we can often apply many processors
for each user and application if needed. Increasingly, applications must be
able to use multiple processors effectively.

• Security on early systems meant keeping the computers in locked rooms
and restricting physical access to those rooms. In contemporary networked
systems with diverse applications, security has become a much more difficult
issue with many aspects.

• Currently, industry can devote considerable hardware and software re-
sources to the development of production software.

The first higher-level programming languages began to appear in the 1950s. IBM
released the first compiler for a programming language in 1957–for the scientific
programming language Fortran. Although Fortran has evolved considerably
during the past 60 years, it is still in use today.

How have the above changes affected programming language design and imple-
mentation over the past 60 years?

• Contemporary programming languages often use automatic memory allo-
cation and deallocation (e.g., garbage collection) to manage a program’s
memory. Although programs in these languages may use more memory
and processor cycles than hand-optimized programs, they can increase
programmer productivity and the security and reliability of the programs.
Think Java, C#, and Python versus C and C++.

• Contemporary programming languages are often implemented using an
interpreter instead of a compiler that translates the program to the pro-
cessor’s machine code–or be implemented using a compiler to a virtual
machine instruction set (which is itself interpreted on the host processor).
Again they use more processor and memory resources to increase program-
mer productivity and the security and reliability of the programs. Think
Java, C#, and Python versus C and C++.

• Contemporary programming languages should make the capabilities of con-
temporary multicore systems conveniently and safely available to programs
and applications. To fail to do so limits the performance and scalability
of the application. Think Erlang, Scala, and Clojure versus C, C++, and
Java.

• Contemporary programming languages increasingly incorporate declarative
features (higher order functions, recursion, immutable data structures, gen-
erators, etc.). These features offer the potential of increasing programming
productivity, increasing the security and reliability of programs, and more
conveniently and safely providing access to multicore processor capabilities.
Think Scala, Clojure, and Java 8 and beyond versus C, C++, and older
Java.
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• etc.

As we study programming and programming languages in this and other courses,
we need to keep the nature of the contemporary programming scene in mind.

Now let’s consider the concept of programming paradigm and the major
paradigms.

1.3 Primary Programming Paradigms

According to Timothy Budd, a programming paradigm is “a way of conceptu-
alizing what it means to perform computation, of structuring and organizing
how tasks are to be carried out on a computer.” [from: Timothy A. Budd.
Multiparadigm Programming in Leda, Addison-Wesley, 1995, page 3]

Historically, computer scientists have classified programming languages into one
of two primary paradigms: imperative and declarative.

In recent years, many imperative languages have added more declarative features,
so the distinction between languages has become blurred. However, the concept
of programming paradigm is still meaningful.

1.3.1 Imperative paradigm

A program in the imperative paradigm has an implicit state (i.e., values of
variables, program counters, etc.) that is modified (i.e., side-effected or mutated)
by constructs (i.e., commands) in the source language.

As a result, such languages generally have an explicit notion of sequencing (of
the commands) to permit precise and deterministic control of the state changes.

Imperative programs thus express how something is to be computed.

Consider the following fragment of Java code:

int count = 0;
int maxc = 10;
while (count <= maxc) {

System.out.println(count) ;
count = count + 1

}

In this fragment, the program’s state includes at least the values of the variables
count and maxc, the sequence of output lines that have been printed, and an
indicator of which statement to execute next (i.e., location or program counter).

The assignment statement changes the value of count and the println statement
adds a new line to the output sequence. These are side effects of the execution.
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Similarly, Java executes these commands in sequence, causing a change in which
statement will be executed next. The purpose of the while statement is to
cause the statements between the braces to be executed zero or more times. The
number of times depends upon the values of count and maxc and how the values
change within the while loop.

We call this state implicit because the aspects of the state used by a particular
statement are not explicitly specified; the state is assumed from the context of
the statement. Sometimes a statement can modify aspects of the state that are
not evident from examining the code fragment itself.

The Java variable count is mutable because its value can change. After the
declaration, count has the value 0. At the end of the first iteration of the while
loop, it has value 1. After the while loop exits, it has a value 10. So a reference
to count yields different values depending upon the state of the program at that
point.

The Java variable maxc is also mutable, but this code fragment does not change
its value.

Imperative languages are the “conventional” or “von Neumann languages” dis-
cussed by John Backus in his 1977 Turing Award address. (See the section
with excerpts from that address.) They are well suited to traditional computer
architectures.

Most of the languages in existence today are primarily imperative in nature.
These include Fortran, C, C++, Java, C#, Python, Lua, and JavaScript.

1.3.2 Declarative paradigm

A program in the declarative paradigm has no implicit state. Any needed state
information must be handled explicitly.

A program is made up of expressions (or terms) that are evaluated rather than
commands that are executed.

Repetitive execution is accomplished by recursion rather than by sequencing.

Declarative programs express what is to be computed (rather than how it is to
be computed).

The declarative paradigm is often divided into two types: functional (or applica-
tive) and relational (or logic).

1.3.2.1 Functional paradigm

In the functional paradigm the underlying model of computation is the mathe-
matical concept of a function.
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In a computation, a function is applied to zero or more arguments to compute a
single result; that is, the result is deterministic (or predictable).

Consider the following Haskell code. (Don’t worry about the details of the
language for now. We study the syntax and semantics of Haskell in an upcoming
chapter.)

counter :: Int -> Int -> String
counter count maxc

| count <= maxc = show count ++ "\n" ++ counter (count+1) maxc
| otherwise = ""

This fragment is similar to the Java fragment above. This Haskell code defines
a function counter that takes two integer arguments, count and maxc, and
returns a string consisting of a sequence of lines with the integers from count to
maxc such that each would be printed on a separate line. (It does not print the
string, but it inserts newline character at the end of each line.)

In the execution of a function call, counter references the values of count and
maxc corresponding to the explicit arguments of the function call. These values
are not changed within the execution of that function call. However, the values
of the arguments can be changed as needed for a subsequent recursive call of
counter.

We call the state of counter explicit because it is passed in arguments of the
function call. These parameters are immutable (i.e., their values cannot change)
within the body of the function. That is, any reference to count or maxc within
a call gets the same value.

In a pure functional language like Haskell, the names like count and maxc are
said to be referentially transparent. In the same context (such as the body of
the function), they always have the same value. A name must be defined before
it is used, but otherwise the order of the execution of the expressions within a
function body does not matter.

There are no “loops”. The functional paradigm uses recursive calls to carry out
a task repeatedly.

In most programming languages that support functional programming, functions
are treated as first class values. That is, like other data types, functions can
be stored in data structures, passed as arguments to functions, and returned
as the results of functions. (The implementation technique for first-order func-
tions usually involves creation of a lexical closure holding the function and its
environment.)

A function that can take functions as arguments or return functions in the
result is called a higher-order function. A function that does not take or return
functions is thus a first-order function. Most imperative languages do not fully
support higher-order functions.
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The higher-order functions in functional programming languages enable regular
and powerful abstractions and operations to be constructed. By taking advan-
tage of a library of higher-order functions that capture common patterns of
computation, we can quickly construct concise, yet powerful, programs.

Purely functional languages include Haskell, Idris, Miranda, Hope, Elm, and
Backus’ FP.

Hybrid functional languages with significant functional subsets include Scala,
F#, OCaml, SML, Erlang, Elixir, Lisp, Clojure, and Scheme.

Mainstream imperative languages such as Java (beginning with version 8), C#,
Python, Ruby, Groovy, Rust, and Swift have recent feature extensions that make
them hybrid languages as well.

1.3.2.2 Relational (or logic) paradigm

In the relational (logic) paradigm, the underlying model of computation is the
mathematical concept of a relation (or a predicate).

A computation is the (nondeterministic) association of a group of values—with
backtracking to resolve additional values.

Consider the following SWI-Prolog code. (Don’t worry about the details of the
language.)

counter(X,Y,S) :- count(X,Y,R), atomics_to_string(R,'\n',S).

count(X,X,[X]).
count(X,Y,[]) :- X > Y.
count(X,Y,[X|Rs]) :- X < Y, NX is X+1, count(NX,Y,Rs).

This fragment is somewhat similar to the Java and Haskell fragments above. It
can be used to generate a string with the integers from X to Y where each integer
would be printed on a separate line. (As with the Haskell fragment, it does not
print the string.)

This program fragment defines a database consisting of four clauses.

The clause

count(X,X,[X]).

defines a fact. For any variable value X and list [X] consisting of the single value
X, count(X,X,[X]) is asserted to be true.

The other three clauses are rules. The left-hand-side of :- is true if the right-
hand-side is also true. For example,

count(X,Y,[]) :- X > Y.

asserts that
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count(X,Y,[])

is true when X > Y. The empty brackets denote an empty list of values.

As a logic or relational language, we can query the database for any missing
components. For example,

count(1,1,Z).

yields the value Z = [1]. However,

count(X,1,[1]).

yields the value X = 1. If more than one answer is possible, the program can
generate all of them in some nondeterministic order.

So, in some sense, where imperative and functional languages only run a compu-
tation in one direction and give a single answer, Prolog can potentially run a
computation in multiple directions and give multiple answers.

Example relational languages include Prolog, Parlog, and miniKanren.

Most Prolog implementations have imperative features such as the cut and the
ability to assert and retract clauses.

1.4 Other Programming Paradigms

The imperative-declarative taxonomy described above divides programming styles
and language features on how they handle state and how they are executed.

The computing community often speaks of other paradigms – procedural, modu-
lar, object-oriented, concurrent, parallel, language-oriented, scripting, reactive,
and so forth. The definitions of these “paradigms” may be quite fuzzy and
vary significantly from one writer to another. Sometimes a term is chosen for
“marketing” reasons – to associate a language with some trend even though the
language may be quite different from others in that paradigm – or to make a
language seem different and new even though it may not be significantly different.

These paradigms tend to divide up programming styles and language features
along different dimensions than the primary taxonomy above. Often the lan-
guages we are speaking of are subsets of the imperative paradigm.

1.4.1 Procedural

Procedural languages, for example, are imperative languages built around the
concept of subprograms – procedures and functions. Programmers divide a
program’s behavior into these program units that call each other. Subprograms
may be nested inside of other subprograms to control the range of the program
where the name of the subprogram is known.
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Languages like C, Fortran, Pascal, Lua, and Python are primarily procedural
languages, although most have evolved to support other styles.

1.4.2 Modular

Modular programming refers more to a design method for programs and program
libraries than to languages.

It means to decompose a program into packages of functionality that can be
developed separately. Key design and implementation details are hidden inside
the module – the principle of information hiding. The interactions among
modules is kept at a minimum – exhibit a low degree of coupling.

A language that provides constructs for defining modules, packages, namespaces,
or separate compilation units can assist in writing modular programs.

1.4.3 Object oriented

The dominant paradigm since the early 1990s has been the object-oriented
paradigm. Because this paradigm is likely familiar with most readers, let’s
examine it in more detail.

We discuss object orientation in terms of an object model. Our object model
includes four basic components:

1. objects (i.e., abstract data structures)
2. classes (i.e., abstract data types)
3. inheritance (hierarchical relationships among abstract data types)
4. subtype polymorphism

Note: Some writers consider dynamic binding a basic component of object
orientation. Here we consider it an implementation technique for subtype
polymorphism.

1.4.3.1 Objects

An object is a characterized by three essential characteristics:

a. state
b. operations
c. identity

An object is a separately identifiable entity that has a set of operations and a
state that records the effects of the operations. An object is typically a first
class entity that can be stored in variables and passed to or returned from
subprograms.

The state is the collection of information held (i.e., stored) by the object.
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• It can change over time.
• It can change as the result of an operation performed on the object.
• It cannot change spontaneously.

The various components of the state are sometimes called the attributes of the
object.

An operation is a procedure that takes the state of the object and zero or more
arguments and changes the state and/or returns one or more values. Objects
permit certain operations and not others.

If an object is mutable, then an operation may change the stored state so that a
subsequent operation on that object acts upon the modified state; the language
is thus imperative.

If an object is immutable, then an operation cannot change the stored state;
instead it returns a new object with the modified state.

Identity means we can distinguish between two distinct objects (even if they
have the same state and operations).

As an example, consider an object for a student desk in a simulation of a
classroom. Student desks are distinct from each other. The relevant state might
be attributes like location, orientation, person using, items in the basket, items
on top, etc. The relevant operations might be state-changing operations (called
mutator, setter, or command operations) such as “move the desk”, “seat student”,
or “remove from basket” or might be state-observing operations (called accessor,
getter, observer, or query operations) such as “is occupied” or “report items on
desktop”.

A language is object-based if it supports objects as a language feature.

Object-based languages include Ada, Modula, Clu, C++, Java, Scala, C#, and
Smalltalk. Pascal (without module extensions), Algol, Fortran. and C are not
inherently object-based.

Some writers require that an object have additional characteristics, but these
notes consider these as important but non-essential characteristics of objects:

d. encapsulation
e. independent lifecycle

The state may be encapsulated within the object – that is, not be directly visible
or accessible from outside the object.

The object may also have an independent lifecycle – that is, the object may exist
independently from the program unit that created it.

We do not include these as essential characteristics because they do not seem
required by the object metaphor. There are languages that use a modularization
feature to enforce encapsulation separately from the object (or class) feature.
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Also, there are languages that may have local “objects” within a function or
procedure.

1.4.3.2 Classes

A class is a template or factory for creating objects.

• A class describes a collection of related objects (i.e., instances of the class).

• Objects of the same class have common operations and a common set of
possible states.

• The concept of class is closely related to the concept of type.

A class description includes definitions of:

• operations on objects of the class
• the possible set of states

As an example, again consider a simulation of a classroom. There might be a
class StudentDesk from which specific instances can be created as needed.

An object-based language is class-based if the concept of class occurs as a
language feature and every object has a class.

Class-based languages include Clu, C++, Java, Scala, C#, Smalltalk, Ruby, and
Ada 95. Ada 83 and Modula are not class-based.

At their core, JavaScript and Lua are object-based but not class-based.

In statically typed, class-based languages such as Java, Scala, C++, and C#
classes are treated as types. Instances of the same class have the same type.

However, some dynamically typed languages may have a more general concept
of type: If two objects have the same set of operations, then they have the same
type regardless of how the object was created. Languages such as Smalltalk and
Ruby have this characteristic – sometimes informally called duck typing. (If it
walks like a duck and quacks like a duck, then it is a duck.)

1.4.3.3 Inheritance

A class C inherits from class P if C’s objects form a subset of P’s objects.

• Class C’s objects must support all of the class P’s operations (but perhaps
are carried out in a special way).

• Class C may support additional operations and an extended state (i.e.,
more information fields).

• Class C is called a subclass or a child or derived class.

• Class P is called a superclass or a parent or base class.
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• Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in base classes and shared among the subclasses.

As an example, again consider the student desks in a simulation of a classroom.
The StudentDesk class might be derived (i.e., inherit) from a class Desk, which in
turn might be derived from a class Furniture. In diagrams, it is the convention
to draw arrows (e.g., ←−) from the subclass to the superclass.

Furniture←− Desk ←− StudentDesk

The simulation might also include a ComputerDesk class that also derives from
Desk.

Furniture ←− Desk ←− ComputerDesk

In Java and Scala, we can express the above inheritance relationships using the
extends keyword as follows.

class Furniture // extends cosmic root class for references
{ ... } // (java.lang.Object, scala.AnyRef)

class Desk extends Furniture
{ ... }

class StudentDesk extends Desk
{ ... }

class ComputerDesk extends Desk
{ ... }

Both StudentDesk and ComputerDesk objects will need operations to simulate a
move of the entity in physical space. The move operation can thus be implemented
in the Desk class and shared by objects of both classes. Invocation of operations
to move either a StudentDesk or a ComputerDesk will be bound to the general
move in the Desk class.

The StudentDesk class might inherit from a Chair class as well as the Desk
class.

Furniture ←− Chair ←− StudentDesk

Some languages support multiple inheritance as shown above for StudentDesk
(e.g., C++, Eiffel). Other languages only support a single inheritance hierarchy.

Because multiple inheritance is both difficult to use correctly and to implement in
a compiler, the designers of Java and Scala did not include multiple inheritance
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of classes as features. Java has a single inheritance hierarchy with a top-level
class named Object from which all other classes derive (directly or indirectly).
Scala is similar, with the corresponding top-level class named AnyRef.

class StudentDesk extends Desk, Chair // NOT VALID in Java
{ ... }

To see some of the problems in implementing multiple inheritance, consider
the above example. Class StudentDesk inherits from class Furniture through
two different paths. Do the data fields of the class Furniture occur once or
twice? What happens if the intermediate classes Desk and Chair have conflicting
definitions for a data field or operation with the same name?

The difficulties with multiple inheritance are greatly decreased if we restrict our-
selves to inheritance of class interfaces (i.e., the signatures of a set of operations)
rather than a supporting the inheritance of the class implementations (i.e., the
instance data fields and operation implementations). Since interface inheritance
can be very useful in design and programming, the Java designers introduced a
separate mechanism for that type of inheritance.

The Java interface construct can be used to define an interface for classes
separately from the classes themselves. A Java interface may inherit from (i.e.,
extend) zero or more other interface definitions.

interface Location3D
{ ... }

interface HumanHolder
{ ... }

interface Seat extends Location3D, HumanHolder
{ ... }

A Java class may inherit from (i.e., implement) zero or more interfaces as well
as inherit from (i.e., extend) exactly one other class.

interface BookHolder
{ ... }

interface BookBasket extends Location3D, BookHolder
{ ... }

class StudentDesk extends Desk implements Seat, BookBasket
{ ... }

This definition requires the StudentDesk class to provide actual implementations
for all the operations from the Location3D, HumanHolder, BookHolder, Seat,
and BookBasket interfaces. The Location3D operations will, of course, need
to be implemented in such a way that they make sense as part of both the
HumanHolder and BookHolder abstractions.
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The Scala trait provides a more powerful, and more complex, mechanism
than Java’s original interface. In addition to signatures, a trait can define
method implementations and data fields. These traits can be added to a class
in a controlled, linearized manner to avoid the semantic and implementation
problems associated with multiple inheritance of classes. This is called mixin
inheritance.

Java 8 generalized interfaces to allow default implementations of methods.

Most statically typed languages treat subclasses as subtypes. That is, if C is a
subclass of P, then the objects of type C are also of type P. We can substitute a
C object for a P object in all cases.

However, the inheritance mechanism in languages in most class-based languages
(e.g., Java) does not automatically preserve substitutability. For example, a
subclass can change an operation in the subclass to do something totally different
from the corresponding operation in the parent class.

1.4.3.4 Polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. Polymorphism appears in
several forms in programming languages. We will discuss these more later.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(i.e., procedure or function call) with the appropriate operation implementation
in an inheritance (subtype) hierarchy.

This form of polymorphism is usually carried out at run time. That implementa-
tion is called dynamic binding. Given an object (i.e., class instance) to which an
operation is applied, the system will first search for an implementation of the
operation associated with the object’s class. If no implementation is found in
that class, the system will check the superclass, and so forth up the hierarchy
until an appropriate implementation is found. Implementations of the operation
may appear at several levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

As an example, again consider the simulation of a classroom. As in our discussion
of inheritance, suppose that the StudentDesk and ComputerDesk classes are
derived from the Desk class and that a general move operation is implemented
as a part of the Desk class. This could be expressed in Java as follows:

class Desk extends Furniture
{ ...
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public void move(...)
...

}

class StudentDesk extends Desk
{ ...

// no move(...) operation here
...

}

class ComputerDesk extends Desk
{ ...

// no move(...) operation here
...

}

As we noted before, invocation of operations to move either a StudentDesk or a
ComputerDesk instance will be bound to the general move in the Desk class.

Extending the example, suppose that we need a special version of the move
operation for ComputerDesk objects. For instance, we need to make sure that
the computer is shut down and the power is disconnected before the entity is
moved.

To do this, we can define this special version of the move operation and associate
it with the ComputerDesk class. Now a call to move a ComputerDesk object will
be bound to the special move operation, but a call to move a StudentDesk object
will still be bound to the general move operation in the Desk class.

The definition of move in the ComputerDesk class is said to override the definition
in the Desk class.

In Java, this can be expressed as follows:

class Desk extends Furniture
{ ...

public void move(...)
...

}

class StudentDesk extends Desk
{ ...

// no move(...) operation here
...

}

class ComputerDesk extends Desk
{ ...

public void move(...)
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...
}

A class-based language is object-oriented if class hierarchies can be incrementally
defined by an inheritance mechanism and the language supports polymorphism
by inheritance along these class hierarchies.

Object-oriented languages include C++, Java, Scala, C#, Smalltalk, and Ada 95.
The language Clu is class-based, but it does not include an inheritance facility.

Other object-oriented languages include Objective C, Object Pascal, Eiffel, and
Oberon 2.

1.4.4 Prototype based

Classes and inheritance are not the only way to support relationships among
objects in object-based languages. Another approach of growing importance is
the use of prototypes.

A prototype-based language does not have the concept of class as defined above.
It just has objects. Instead of using a class to instantiate a new object, a program
copies (or clones) an existing object – the prototype – and modifies the copy to
have the needed attributes and operations.

Each prototype consists of a collection of slots. Each slot is filled with either a
data attribute or an operation

This cloning approach is more flexible than the class-based approach.

In a class-based language, we need to define a new class or subclass to create a
variation of an existing type. For example, we may have a Student class. If we
want to have students who play chess, then we would need to create a new class,
say ChessPlayingStudent, to add the needed data attributes and operations.

In a class-based language, the boundaries among categories of objects specified
by classes should be crisply defined. That is, an object is in a particular class or
it is not. Sometimes this crispness may be unnatural.

In a prototype-based language, we simply clone a student object and add new
slots for the added data and operations. This new object can be a prototype for
further objects.

In a prototype-based language, the boundaries between categories of objects
created by cloning may be fuzzy. One category of objects may tend to blend
into others. Sometimes this fuzziness may be more natural.

Consider categories of people associated with a university. These categories
may include Faculty, Staff, Student, and Alumnus. Consider a student who
gets a BSCS degree, then accepts a staff position as a programmer and stays a
student by starting an MS program part-time, and then later teaches a course
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as a graduate student. The same person who started as a student thus evolves
into someone who is in several categories later. And he or she may also be a
chess player.

Instead of static, class-based inheritance and polymorphism, some languages
exhibit prototype-based delegation. If the appropriate operation cannot be found
on the current object, the operation can be delegated to its prototype, or perhaps
to some other related, object. This allows dynamic relationships along several
dimensions. It also means that the “copying” or “cloning” may be partly logical
rather than physical.

Prototypes and delegation are more basic mechanisms than inheritance and
polymorphism. The latter can often be implemented (or perhaps “simulated”)
using the former.

Self, JavaScript, and Lua are prototype-based languages.

1.5 History of Programming Languages

From the instructor’s perspective, key languages and milestones in the history
of programming languages include the following.

1950’s

• Fortran, 1957; imperative, first compiler, math-like language for scien-
tific programming, developed at IBM by John Backus, influenced most
subsequent languages, enhanced versions still in use today (first language
learned by the instructor in 1974)

• Lisp, 1958; mix of imperative and functional features, code and data
have same format (i.e., the language is homoiconic), related to Church’s
lambda calculus theory, recursion, syntactic macros, automatic storage
management, higher order functions, developed at MIT by John McCarthy,
influenced most subsequent languages/research, enhanced versions still in
use today

• Algol, 1958, 1960; imperative, nested block structure, lexical scoping, BNF
invented to define syntax, call by name parameter passing, developed by an
international team from Europe and the USA, influenced most subsequent
languages

• COBOL, 1959; imperative, key designer Grace Hopper, business/accounting
programming, still in use today (third language learned by instructor in
late 1975)

1960’s

• Simula; 1962, 1967; imperative, original purpose for discrete-event sim-
ulation, developed in Norway by Ole-Johan Dahl and Kristen Nygaard,
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first object-oriented language (in Scandinavian school of object-oriented
languages), influenced subsequent object-oriented languages

• Snobol, 1962; string processing, patterns as first class data, backtracking
on failure, developed at AT&T Bell Laboratories by David J. Farber, Ralph
E. Griswold and Ivan P. Polonsky

• PL/I, 1964; IBM-designed language to merge scientific (Fortran), business
(COBOL), and systems programming (second language learned by the
instructor in early 1975)

• BASIC, 1964; interactive computing in early timesharing and microcom-
puters environments, developed at Dartmouth College by John G. Kemeny
and Thomas E. Kurtz

• Algol 68, 1968; ambitious and rigorously defined successor to Algol 60,
greatly influenced computing science theory and subsequent language
designs, not widely implemented because of its complexity

1970’s

• Pascal, 1970; simplified Algol family language designed by Niklaus Wirth
(Switzerland) because of frustration with complexity of Algol 68, struc-
tured programming, one-pass compiler, important for teaching in 1980s
and 1990s, Pascal-P System virtual machine implemented on many early
microcomputers (Pascal used by UM CIS in CS1 and CS2 until 1999)

• Prolog, 1972; first and most widely used logic (relational) programming
language, originally developed by a team headed by Alain Colmerauer
(France), rooted in first-order logic, most modern Prolog implementa-
tions based on the Edinburgh dialect (which ran on the Warren Abstract
Machine), used extensively for artificial intelligence research in Europe,
influenced subsequent logic languages and also Erlang

• C, 1972; systems programming language for Unix operating system, widely
used today, developed by Dennis Ritchie at AT&T Bell Labs, influenced
many subsequent languages

• Smalltalk, 1972; ground-up object-oriented programming language,
message-passing between objects (in American school of object-oriented
languages), developed by Alan Kay and others at Xerox PARC, influenced
many subsequent object-oriented languages

• ML, 1973; mostly functional, polymorphic type system on top of Lisp-like
language, pioneering statically typed functional programming, algebraic
data types, developed by Robin Milner at the University of Edinburgh,
influenced subsequent functional programming languages

• Scheme, 1975; minimalist dialect of Lisp with lexical scoping, tail call
optimization, first-class continuations, developed by Guy Steele and Gerald
Jay Sussman at MIT, influenced subsequent languages/research
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• Icon, 1977; structured programming successor to Snobol, developed by a
team led by Ralph Griswold at the University of Arizona, uses goal-directed
execution based on success or failure of expressions

1980’s

• C++, 1980; C with Simula-like classes, developed by Bjarne Stroustrup
(Denmark)

• Ada, 1983; designed by US DoD-funded committee as standard language
for military applications, design led by Jean Ichbiah and a team in France,
statically typed, block structured, modular, synchronous message passing,
object-oriented extensions in 1995 (instructor studied this language while
working in the military aerospace industry 1980-83)

• Eiffel, 1985; object-oriented language designed with strong emphasis on
software engineering concepts such as design by contract and command-
query separation, developed by Bertrand Meyer (France)

• Objective C, 1986; C with Smalltalk-like messaging, developed by Brad
Cox and Tom Love at Stepstone, selected by Steve Jobs’ NeXT systems,
picked up by Apple when NeXT absorbed, key language for OS X and iOS

• Erlang, 1986; message-passing concurrency on functional programming base
(actors), fault-tolerant/real-time systems, dynamic typing, virtual machine,
originally used in telephone switches, developed by Joe Armstrong, Robert
Virding and Mike Williams at Ericsson (Sweden)

• Self, 1986; dialect of Smalltalk, developed by David Ungar and Randall
Smith while at Xerox PARC, Stanford University, and Sun Microsystems,
first prototype-based object-oriented language (which influenced JavaScript,
Lua), used virtual machine with just-in-time compilation (JIT) which
influenced Java HotSpot

• Perl, 1987; dynamic programming language originally focused on provid-
ing powerful text-processing facilities based around regular expressions,
developed by Larry Wall

1990’s

• Haskell, 1990; purely functional language with non-strict semantics (i.e.,
lazy evaluation) and strong static typing, developed by an international
committee of functional programming researchers, widely used in research
community

• Python, 1991; dynamically typed, multiparadigm language, developed by
Guido van Rossum (Netherlands), increasing in use

• Ruby, 1993; dynamically typed, object-oriented, supports reflec-
tive/metaprogramming and internal domain-specific languages, developed
by Yukihiro “Matz” Matsumoto (Japan), popularized by Ruby on Rails
web framework, influenced subsequent languages
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• Lua, 1993; minimalistic language designed for embedding in any environ-
ment supporting standard C, developed by Roberto Ierusalimschy, Luiz
Henrique de Figueiredo, and Waldemar Celes (Brazil), dynamic typing,
lexical scoping, first-class functions, garbage collection, tail recursion opti-
mization, pervasive table/metatable data structure, facilities for prototype
object-oriented programming, coroutines, used as scripting language in
games, etc.

• R, 1993; statistical computing and graphics, open-source implementation
of the language S, developed by Ross Ihaka and Robert Gentleman (New
Zealand)

• Java, 1995; class-based object-oriented programming, statically typed,
virtual machine, version 8 has functional programming features (higher
order functions, streams); developed by Sun Microsystems, now Oracle

• JavaScript, 1995 (standardized as ECMAScript); designed for embedding
in web pages, developed by Brendan Eich at Netscape in 12 days to
meet a deadline, internals influenced by Scheme and Self but using a
Java-like syntax, dynamic typing, first-class functions, prototype-based
object-oriented programming, became popular quickly before language
design made clean

• PHP, 1995; originally developed by Rasmus Lerdorf (Canada), evolved
organically, server-side scripting language for dynamic web applications,

• OCaml (originally Objective Caml), 1996; a dialect of ML that adds object-
oriented constructs, focusing on performance and practical use, developed
by a team lead by Xavier Leroy (France)

2000’s

• C#, 2001; class-based object-oriented programming, statically typed,
mostly imperative, language that runs on Microsoft’s Common Language
Infrastructure (in some sense, Microsoft’s response to Sun’s Java)

• F#, 2002; OCaml re-envisioned for Microsoft’s Common Language In-
frastructure (.Net), developed by a team led by Don Syme at Microsoft
Research in the UK, replaces OCaml’s object and module systems with
.Net concepts,

• Scala, 2003; hybrid functional and object-oriented language that runs on
the Java Virtual Machine, developed by Martin Odersky’s team at EPFL
in Switzerland

• Groovy, 2003; dynamically typed, object-oriented “scripting” language that
runs on the Java Virtual Machine, originally proposed by James Strachan

• miniKanren, 2005; a family of relational programming languages, developed
by Dan Friedman’s team at Indiana University, implemented as an extension
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to other languages (originally in Scheme, most popular current usage
probably in Clojure)

• Clojure, 2007; Lisp dialect developed by Rich Hickey, runs on Java Virtual
Machine, Microsoft Common Language Runtime, and JavaSript platform,
emphasis on functional programming, concurrency (e.g., software transac-
tional memory), and immutable data structures

2010’s

• Idris, 2011 (1.0 release planned 2017); eagerly evaluated, Haskell-like
functional language with dependent types, incorporating ideas from proof
assistants, intended for practical programming, developed by Edwin Brady
(UK)

• Julia, 2012; dynamic programming language designed to address high-
performance numerical and scientific programming

• Elixir, 2012 (1.0 release 2014); functional concurrent programming language,
dynamic strong typing, metaprogramming, protocols, Erlang actors, runs
on Erlang Virtual Machine, influenced by Erlang, Ruby, and Clojure,
developed by a team led by Jose Valim (Brazil)

• Elm, 2012 (0.18 release November 2016); simplified, eagerly evaluated
Haskell-like functional programming language that compiles to JavaScript,
intended primarily for user-interface programming in a browser, supports
reactive-style programming, developed by Evan Czaplicki (original version
for his senior thesis at Harvard)

• Rust, 2012 (1.0 release 2015); systems programming language that in-
corporates contemporary language concepts and focuses on safety and
performance, meant to replace C and C++, developed originally at Mozilla
Research by Graydon Hoare

• PureScript, 2013 (0.10.6 release February 2017); an eagerly evaluated
functional programming language otherwise similar to Haskell, primar-
ily compiles to human-readable JavaScript, originally developed by Phil
Freeman

• Swift, 2014; Apple’s replacement for Objective C that incorporates con-
temporary language concepts and focuses on program safety; “Objective C
without the C”

• etc.

1.6 Abstraction

As computing scientists and computer programmers, we should remember the
maxim:
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Simplicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

1.6.1 Kinds of abstraction

Large complex systems can only be made understandable by decomposing them
into modules. When viewed from the outside, from the standpoints of users,
each module should be simple, with the complexity hidden inside.

We strive for modules that have simple interfaces that can be used without
knowing the implementations. Here we use interface to mean any information
about the module that other modules must assume to be able to do their work
correctly.

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

When we develop an algorithm following the top-down approach, we are practicing
procedural abstraction. At a high level, we break the problem up into several
tasks. We give each task a name and state its requirements, but we do not worry
about how the task is to be accomplished until we expand it at a lower level of
our design.

When we code a task in a programming language, we will typically make each
task a subprogram (procedure, function, subroutine, method, etc.). Any other
program component that calls the subprogram needs to know its interface (name,
parameters, return value, assumptions, etc.) but does not need to know the
subprogram’s internal implementation details. The internal implementation can
be changed without affecting the caller.

In data abstraction, the focus is on the problem’s data rather than the tasks to
be carried out.

1.6.2 Procedures and functions

Generally we make the following distinctions among subprograms:
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• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g., displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function associated with an object or class in an
object-oriented program. Some object-oriented languages use the metaphor
of message-passing. A method is the feature of an object that receives
a message. In an implementation, a method is typically a procedure or
function associated with the object; the object may be in implicit parameter
of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may
have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

In Haskell, the primary unit of procedural abstraction is the pure function.
Haskell also groups functions and other declarations into a program unit called a
module. A module explicitly exports selected functions and keep others hidden.

1.7 Motivating Functional Programming: John Backus

John W. Backus (December 3, 1924 – March 17, 2007) was a pioneer in research
and development of programming languages. He was the primary developer of
Fortran while a developer at IBM in the mid-1950s. Fortran is the first widely
used high-level language. Backus was also a participant in the international
team that designed the influential languages Algol 58 and Algol 60 a few years
later. The notation used to describe the Algol 58 language syntax–Backus-Naur
Form (BNF)–bears his name. This notation continues to be used to this day.

In 1977, ACM bestowed its Turing Award on Backus in recognition of his career
of accomplishments. (This award is sometimes described as the “Nobel Prize for
computer science”.) The annual recipient of the award gives an address to a major
computer science conference. Backus’s address was titled “Can Programming
Be Liberated from the von Neumann Style? A Functional Style and Its Algebra
of Programs”.

Although functional languages like Lisp go back to the late 1950’s, Backus’s
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address did much to stimulate research community’s interest in functional pro-
gramming languages and functional programming over the past 40 years.

The next subsection gives excerpts from Backus’ Turing Award address published
as the article “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs” (Communications of the ACM,
Vol. 21, No. 8, pages 613–41, August 1978).

1.7.1 Excerpts from Backus’s Turing Award Address

Programming languages appear to be in trouble. Each successive language
incorporates, with little cleaning up, all the features of its predecessors plus a
few more. Some languages have manuals exceeding 500 pages; others cram a
complex description into shorter manuals by using dense formalisms. . . . Each
new language claims new and fashionable features, such as strong typing or
structured control statements, but the plain fact is that few languages make
programming sufficiently cheaper or more reliable to justify the cost of producing
and learning to use them.

Since large increases in size bring only small increases in power, smaller, more
elegant languages such as Pascal continue to be popular. But there is a desperate
need for a powerful methodology to help us think about programs, and no
conventional language even begins to meet that need. In fact, conventional
languages create unnecessary confusion in the way we think about programs. . . .
In order to understand the problems of conventional programming languages,
we must first examine their intellectual parent, the von Neumann computer.
What is a von Neumann computer? When von Neumann and others conceived
of it . . . [in the 1940’s], it was an elegant, practical, and unifying idea that
simplified a number of engineering and programming problems that existed then.
Although the conditions that produced its architecture have changed radically,
we nevertheless still identify the notion of “computer” with this . . . concept.

In its simplest form a von Neumann computer has three parts: a central processing
unit (or CPU), a store, and a connecting tube that can transmit a single word
between the CPU and the store (and send an address to the store). I propose to
call this tube the von Neumann bottleneck. The task of a program is to change
the contents of the store in some major way; when one considers that this task
must be accomplished entirely by pumping single words back and forth through
the von Neumann bottleneck, the reason for its name becomes clear.

Ironically, a large part of the traffic in the bottleneck is not useful data but
merely names of data, as well as operations and data used only to compute
such names. Before a word can be sent through the tube its address must be in
the CPU; hence it must either be sent through the tube from the store or be
generated by some CPU operation. If the address is sent form the store, then
its address must either have been sent from the store or generated in the CPU,
and so on. If, on the other hand, the address is generated in the CPU, it must

27



either be generated by a fixed rule (e.g., “add 1 to the program counter”) or by
an instruction that was sent through the tube, in which case its address must
have been sent, and so on.

Surely there must be a less primitive way of making big changes in the store than
by pushing vast numbers of words back and forth through the von Neumann
bottleneck. Not only is this tube a literal bottleneck for the data traffic of a
problem, but, more importantly, it is an intellectual bottleneck that has kept us
tied to word-at-a-time thinking instead of encouraging us to think in terms of
the larger conceptual units of the task at hand. . . .

Conventional programming languages are basically high level, complex versions
of the von Neumann computer. Our . . . old belief that there is only one kind of
computer is the basis our our belief that there is only one kind of programming
language, the conventional–von Neumann–language. The differences between
Fortran and Algol 68, although considerable, are less significant than the fact
that both are based on the programming style of the von Neumann computer.
Although I refer to conventional languages as “von Neumann languages” to take
note of their origin and style, I do not, of course, blame the great mathematician
for their complexity. In fact, some might say that I bear some responsibility for
that problem.

Von Neumann programming languages use variables to imitate the computer’s
storage cells; control statements elaborate its jump and test instructions; and
assignment statements imitate its fetching, storing, and arithmetic. The assign-
ment statement is the von Neumann bottleneck of programming languages and
keeps us thinking in word-at-at-time terms in much the same way the computer’s
bottleneck does.

Consider a typical program; at its center are a number of assignment statements
containing some subscripted variables. Each assignment statement produces
a one-word result. The program must cause these statements to be executed
many times, while altering subscript values, in order to make the desired overall
change in the store, since it must be done one word at a time. The programmer
is thus concerned with the flow of words through the assignment bottleneck as
he designs the nest of control statements to cause the necessary repetitions.

Moreover, the assignment statement splits programming into two worlds. The
first world comprises the right sides of assignment statements. This is an orderly
world of expressions, a world that has useful algebraic properties (except that
those properties are often destroyed by side effects). It is the world in which
most useful computation takes place.

The second world of conventional programming languages is the world of state-
ments. The primary statement in that world is the assignment statement itself.
All the other statements in the language exist in order to make it possible to
perform a computation that must be based on this primitive construct: the
assignment statement.
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This world of statements is a disorderly one, with few useful mathematical
properties. Structured programming can be seen as a modest effort to introduce
some order into this chaotic world, but it accomplishes little in attacking the
fundamental problems created by the word-at-a-time von Neumann style of
programming, with its primitive use of loops, subscripts, and branching flow of
control.

Our fixation on von Neumann languages has continued the primacy of the von
Neumann computer, and our dependency on it has made non-von Neumann
languages uneconomical and has limited their development. The absence of full
scale, effective programming styles founded on non-von Neumann principles has
deprived designers of an intellectual foundation for new computer architectures.
. . .

1.7.2 Aside on the disorderly world of statements

Backus states that “the world of statements is a disorderly one, with few math-
ematical properties”. Even in 1977 this was a bit overstated since Dijkstra’s
work on the weakest precondition (wp) calculus and other work on axiomatic
semantics had already appeared.

However, because of the referential transparency property of purely functional
languages, reasoning can often be done in an equational manner within the
context of the language itself. We examine this convenient approach later in
these notes.

In contrast, the wp-calculus and other axiomatic semantic approaches must
project the problem from the world of programming language statements into
the world of predicate calculus, which is much more orderly. We leave this study
to other courses (such as CSci 550, Program Semantics and Derivation).

1.7.3 Perspective from four decades later

In his Turing Award Address, Backus went on to describe FP, his proposal for
a functional programming language. He argued that languages like FP would
allow programmers to break out of the von Neumann bottleneck and find new
ways of thinking about programming.

FP itself did not catch on, but the widespread attention given to Backus’ address
and paper stimulated new interest in functional programming to develop by
researchers around the world. Modern languages like Haskell developed partly
from the interest generated.

In the 21st Century, the software industry has become more interested in
functional programming. Some functional programming features now appear in
most mainstream programming languages (e.g., in Java 8). This interest seems
to driven primarily by two concerns:
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• managing the complexity of large software systems effectively
• exploiting multicore processors conveniently and safely

The functional programming paradigm is able to address these concerns because
of such properties such as referential transparency, immutable data structures,
and composability of components. We look at these aspects later in these notes.

1.8 Review of Relevant Mathematics

This section reviews the mathematical concepts of functions and a few other
mathematical concepts used in these notes. The concept of function in functional
programming corresponds closely to the mathematical concept of function.

1.8.1 Natural numbers and ordering

Several of the examples in these notes use natural numbers.

For this study, we consider the set of natural numbers N to consist of 0 and the
positive integers.

Inductively, n ∈ N if and only if one of the following holds

• n = 0
• There exists m ∈ N such that m = S(n)

where S is the successor function, which returns the next element.

Furthermore,

• No element is the successor of more one other natural number.
• 0 is not the successor of any natural number. That is, it is the least (base)

element.

The natural numbers thus form a totally ordered set in conjunction with the
binary relation ≤ (less or equal). That is, the relation ≤ satisfies the following
properties on set N :

• n ≤ n for all n ∈ N (reflexivity)
• m ≤ n and n ≤ m implies m = n (antisymmetry)
• m ≤ n and n ≤ p implies m ≤ p (transitivity)
• Either m ≤ n or n ≤ m for all m, n ∈ N (trichotomy)

It is also a partial ordering because it satisfies the first three properties above.

For all m, n ∈ N , we can define the other ordering relations in terms of =, 6=,
and ≤ as follows:

• m < n (less) to mean m ≤ n and m 6= n. We say that m is smaller (or
simpler) than n.
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• m > n (greater) to mean n ≤ m and n 6= m. We say that m is larger (or
more complex) than n.

• m ≥ n (greater or equal) to mean the same as n ≤ m

1.8.2 Functions

As we have studied in mathematics courses, a function is a mapping from a set
A into a set B such that each element of A is mapped into a unique element of
B.

• The set A (on which f is defined) is called the domain of f .
• The set of all elements of B into which f maps elements of A is called the

range (or codomain) of f , and is denoted by f(A).

If f is a function from A into B, then we write:

f : A→ B

We also write the equation

f(a) = b

to mean that the value (or result) from applying function f to an element a ∈ A
is an element b ∈ B.

If a function

f : A→ B

and A ⊆ A′, then we say that f is a partial function from A′ to B and a total
function from A to B. That is, there are some elements of A′ on which f may
be undefined.

1.8.3 Recursive functions

Informally, a recursive function is a function defined using recursion.

In computing science, recursion is a method in which an “object” is defined in
terms of smaller (or simpler) “objects” of the same type. A recursion is usually
defined in terms of a recurrence relation.

A recurrence relation defines an “object” xn as some combination of zero or more
other “objects” xi for i < n. Here i < n means that i is smaller (or simpler)
than n. If there is no smaller object, then n is a base object.

For example, consider a recursive function to compute the sum s of the first n
natural numbers.

We can define a recurrence relation for s with the following equations:
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s(n) = 0, if n = 0
s(n) = n + s(n− 1), if n ≥ 1

For example, consider s(3),

s(3) = 3+s(2) = 3+(2+s(1)) = 3+(2+(1+s(0))) = 3+(2+(1+0)) =
6

1.8.4 Mathematical induction on natural numbers

We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments.

We can define fact using the product operator as follows:

fact(n) =
∏i=n

i=1 i

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n− 1), if n ≥ 1

It is, of course, easy to see that the recurrence relation definition is equivalent
to the previous definition. But how can we prove it?

To prove that the above definitions of the factorial function are equivalent, we
can use mathematical induction over the natural numbers.

Mathematical induction: To prove a logical proposition P (n) holds for any
natural number n, we must show two things:

• For the base case n = 0, show that P (0) holds.
• For the inductive case n = m + 1, show that, if P (m) holds for some

natural number m, then P (m + 1) also holds.

The P (m) assumption is called the induction hypothesis.

Now let’s prove that the two definitions fact and fact’ are equivalent.

Prove For all natural numbers n, fact(n) = fact’(n).

Base case n = 0.

fact(0)
= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ 0 : i)
= { empty range for Π, 1 is the identity element of × }

1
= { definition of fact’ (first leg, right to left) }

fact’(0)
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Inductive case n = m + 1.
Given induction hypothesis fact(m) = fact’(m), prove fact(m + 1) =fact’(m + 1).

fact’(m + 1)
= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ m + 1 : i)
= { m + 1 > 0, so m + 1 term exists, split it out }

(m + 1)× (Πi : 1 ≤ i ≤ m : i)
= { definition of fact (right to left) }

(m + 1)× fact(m)
= { induction hypothesis }

(m + 1)× fact’(m)
= { m + 1 > 0, definition of fact’ (second leg, right to left) }

fact’(m + 1)

Therefore, we have proved fact(n) = fact’(n) for all natural numbers n. QED

In the inductive step above, we explicitly state the induction hypothesis and
assertion we wish to prove in terms of a different variable name (m instead of
n) than the original statement. This helps to avoid the confusion in use of the
induction hypothesis that sometimes arises.

We use an equational style of reasoning. To prove that an equation holds, we
begin with one side and prove that it is equal to the other side. We repeatedly
“substitute equals for equal” until we get the other expression.

Each transformational step is justified by a definition, a known property of
arithmetic, or the induction hypothesis.

The structure of this inductive argument closely matches the structure of the
recursive definition of fact’.

What does this have to do with functional programming? Many of the functions
we will define in these notes have a recursive structure similar to fact’. The
proofs and program derivations that we do will resemble the inductive argument
above.

Recursion, induction, and iteration are all manifestations of the same phe-
nomenon.

1.8.5 Operations

A function

⊕ : (A×A)→ A

is called a binary operation on A. We usually write binary operations in infix
form:
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a ⊕ a’

We often call a two-argument function of the form

⊕ : (A×B)→ C

a binary operation as well. We can write this two argument function in the
equivalent curried form:

⊕ : A→ (B → C)

The curried form shows a multiple-paramenter function in a form where the
function takes the arguments one at a time, returning the resulting function
with one fewer arguments.

Let ⊕ be a binary operation on some set A and x, y, and z be elements of A.
We can define the following kinds of properties.

• Operation ⊕ is closed on A if and only if x⊕ y ∈ A for any x, y ∈ A. That
is, the operation is a total function on its domain.

• Operation ⊕ is associative if and only if (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for
x, y, z ∈ A.

• Operation ⊕ is commutative (also called symmetric) if and only if x⊕ y =
y ⊕ x for x, y ∈ A.

• An element e of set A is

– a left identity of ⊕ if and only if e⊕ x = x for any x ∈ A
– a right identity of ⊕ if and only if x⊕ e = x for any x ∈ A
– an identity of ⊕ if and only if it is both a left and a right identity.

An identity of an operation is called a unit of the operation.

• An element z of set A is

– a left zero of ⊕ if and only if z ⊕ x = z for any x ∈ A
– a right zero of ⊕ if and only if x⊕ z = z for any x ∈ A
– a zero of ⊕ if and only if it is both a right and a left zero

• If e is the identity of ⊕ and x⊕ y = e for some x and y, then

– x is a left inverse of y
– y is a right inverse of x.

Elements x and y are inverses of each other if x⊕ y = e = y ⊕ x.

For example, the addition operation + on natural numbers is closed, associative,
and commutative and has the identity element 0. It has neither a left or right
zero element and the only element with a left or right inverse is 0. If we consider
the set of all integers, then all elements also have inverses.

34



Also, the multiplication operation * on natural numbers (or on all integers) is
closed, associative, and commutative and has identity element 1 and zero element
0. Only value 1 has a left or right inverse.

However, the subtraction operation on natural numbers is not closed, associative,
or commutative and has neither a left nor right zero. The value 0 is subtraction’s
right identity, but subtraction has no left identity. Each element is its own right
and left inverse. If we consider all integers, then the operation is also closed.

1.8.6 Algebraic structures

We can also define algebraic structures for binary operations on a set with certain
properties.

• If ⊕ is an associative operation closed on A, then ⊕ and A are said to form
a semigroup.

• A semigroup that also has an identity element is called a monoid.

• A monoid that is also commutative is a commutative monoid.

• If every element of a monoid has an inverse then the monoid is called a
group.

• If a monoid or group is also commutative, then it is said to be Abelian.

For example, addition on natural numbers forms a commutative monoid and on
integers forms an Abelian group.

1.9 Exercises

TODO: Add

1.10 References

TODO: Complete and update

[Craig 2007] Iain D. Craig. Object-Oriented Programming Languages, Springer
2007. (Especially chapter 1 “Introduction” and chapter 3 “Prototype and
Actor Languages”)

[Cunningham 2014] H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1994-2014.

[Horstmann 1995] Cay S. Horstmann. Mastering Object-Oriented Design in
C++, Wiley, 1995. (Especially chapters 3-6 on “Implementing Classes”,
“Interfaces”, “Object-Oriented Design”, and “Invariants”)

[Wikipedia 2017] Wikipedia article on “History of Programming Languages”
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1.11 Terms and Concepts

TODO: Complete and update

Programming language paradigms (imperative, declarative, functional, relational
or logic language), program state, implicit versus explicit state, execution of
commands versus evaluation of expressions, abstraction, procedural abstraction,
data abstraction, procedure, function, method
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