
CSci 450: Organization of Programming
Languages

Exploring Languages using Interpreters and
Functional Programming

H. Conrad Cunningham

20 March 2018

Contents
0 Introduction to Functional Programming 2

0.1 Motivation . 2
0.2 Course prerequisites . 3
0.3 Course goals . 3
0.4 Desired Student Outcomes . 3

Copyright (C) 2016-2018, H. Conrad Cunningham

Acknowledgements: I adapted and revised this introductory module from
chapter 1 of my Notes on Functional Programming with Haskell and the revised
accreditation and assessment planning document I developed for the course.

In 2017, I continued to develop this module. The student outcomes have not been
updated to match the changes for either the Fall 2017 Programming Languages
course or the Spring 2017 Multiparadigm Programming course.

In Spring 2018, I linked in modified Programming Paradigms and Abstraction
documents that will be included in a future draft of this material. I also changed
to my new working title for this work.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of March 2018 is a recent
version of Firefox from Mozilla.

TODO:

1

• Update objectives for the Programming Languages course

0 Introduction to Functional Programming

0.1 Motivation

This is a course on functional programming.

As a course on programming, it emphasizes the analysis and solution of problems,
the development of correct and efficient algorithms and data structures that
embody the solutions, and the expression of the algorithms and data structures
in a form suitable for processing by a computer. The focus is more on the human
thought processes than on the computer execution processes.

As a course on functional programming, it approaches programming as the
construction of definitions for (mathematical) functions and (immutable) data
structures. Functional programs consist of expressions that use these definitions.
The execution of a functional program entails the evaluation of the expressions
making up the program. Thus this course’s focus is on problem solving techniques,
algorithms, data structures, and programming notations appropriate for the
functional approach.

This is not a course on functional programming languages. In particular, the
course does not undertake an in-depth study of the techniques for implementing
functional languages on computers. The focus is on the concepts for programming,
not on the internal details of the technological artifact that executes the programs.

Of course, we want to be able to execute our functional programs on a computer
and, moreover, to execute them efficiently. Thus we must become familiar
with some concrete programming language and use an implementation of that
language to execute our programs. To be able to analyze program efficiency, we
must also become familiar with the basic techniques that are used to evaluate
expressions.

The academic community has long been interested in functional programming. In
recent years, the practitioner community has also become interested in functional
programming techniques and languages. There is growing use of languages
that are either primarily functional or have significant functional subsets–such
as Haskell, OCaml, Scala, Clojure, F#, Erlang, and Elixir. Most mainstream
languages have been extended with new functional programming features and
libraries–for example, Java, C#, Python, JavaScript, and Swift. Other interesting
research languages such as Elm and Idris are also generating considerable interest.

In this version of this course, we use the Haskell 2010 language. Haskell is a “lazy”
functional language whose development began in the late 1980’s. We also use a
set of programming tools based on GHC, the Glasgow Haskell Compiler. GHC

2

is distributed in a “batteries included” bundle called the the Haskell Platform.
(That is, it bundles GHC with commonly used libraries and tools.)

Most of the concepts, techniques, and skills learned in this Haskell-based course
can be applied in other functional languages and libraries. More importantly,
any time we learn new approaches to problem solving and programming, we
become better programmers in whatever language we are working. A course on
functional programming provides a novel, interesting, and, probably at times,
frustrating opportunity to learn more about the nature of the programming task.

Enjoy the course!

0.2 Course prerequisites

This course assumes the reader has basic knowledge and skills in programming,
algorithms, and data structures at the level of a three-semester introductory
computer science sequence or above. It assumes that the reader has programming
experience using a language such as Java, C++, Python, or C#; it does not
assume any previous experience in functional programming. (For example,
completion of CSci 211, Computer Science III, at the University of Mississippi
should suffice.)

This course also assumes that the reader has basic knowledge and skills in
mathematics at the level of a college-level course in discrete mathematical
structures for computer science students. (For example, completion of Math
301, Discrete Mathematics, at the University of Mississippi should suffice.)
The “Review of Relevant Mathematics” section reviews some of the concepts,
terminology, and notation used in this course.

0.3 Course goals

The course has the following general goals.

1. This course enables undergraduate seniors and beginning graduate students
to develop nontrivial computer programs within the functional program-
ming paradigm using the chosen language. The programs should correctly
meet their requirements, be algorithmically efficient, and be developed
using appropriate design and programming methods.

2. The students should learn to think and to solve problems using the concepts
of functional programming and be able to apply those concepts in languages
other than the chosen language for the course.

For this version of the course, we choose to use the Haskell programming language.

3

0.4 Desired Student Outcomes

Upon successful completion of the course, students will be able to:

1. describe the concepts of the functional programming paradigm

• Core Concepts – related mathematics (functions, recursion, induc-
tion, operations, etc.), programming paradigms (imperative, declar-
ative, functional, logic), explicit versus implicit state, side effect,
command versus expression, referential transparency, procedural and
data abstraction, functions, recursion, mutable and immutable data
structures, first class functions, higher-order functions

• Advanced Concepts – anonymous functions, algebraic data types,
pattern matching, polymorphic typing, modules, abstract data types,
information hiding, sequence comprehensions, type inference, type
classes, subtyping

2. recognize syntactically and semantically correct functional programs writ-
ten in the chosen language

• Core Concepts – syntax and semantics of the chosen language

3. explain the execution (i.e., evaluation) of functional programs using appro-
priate (substitution) models

• Core Concepts – substitution model, strict versus nonstrict evaluation,
string and graph reduction models, lazy and eager evaluation, time
and space complexity, termination, partial versus total functions,
preconditions and postconditions

• Advanced Concepts – infinite data structures, corecursion, productiv-
ity

4. develop (i.e., design, implement, execute, and test) syntactically and
semantically correct functional programs written in the chosen language

• Core Concepts – compilation and interpretation, Read-Evaluate-Print
Loop (REPL), debugging, testing, use of features of chosen language

5. analyze problems to formulate the requirements for functional programming
solutions

6. apply appropriate design and programming techniques and idioms to
develop effective functional programs in the chosen language

• Core Concepts – tail recursion, auxiliary functions, accumulating pa-
rameters, modules, information hiding, data abstraction and abstract
data types, top-down refinement, separation of data from control,
following “types” to implementations, problem-solving strategies

4

• Advanced Concepts – currying, partial evaluation, composition, com-
binators, patterns of computation, generic functions

7. evaluate alternative functional programs in the chosen language to deter-
mine which are better according to selected criteria

8. relate the concepts and methods for functional programming in the chosen
language to their previous programming knowledge and experiences

9. be more confident as computer programmers using a variety of languages
and techniques

10. appreciate the ability to exploit the abstraction and mathematical proper-
ties of a purely functional programs and languages

11. study and learn a programming paradigm and language with which they
previously had little knowledge

12. (optionally) construct reusable libraries by abstracting recurring aspects
using advanced features of the chosen language

• Example Concepts – algebraic design, monads, functors, advanced
design of abstract data types and modules

13. (optionally) exploit the mathematical nature of purely functional programs
to prove properties, transform programs, and synthesize (i.e., derive)
programs from their specifications

• Example Concepts – algebraic properties, equational reasoning, struc-
tural induction, program synthesis

14. (optionally) develop concurrent programs using selected features of the
chosen programming language

• Example Concepts – persistent data structures, parallel map-reduce
operations, actors, transactional memory

15. (optionally) generate new or modify existing programs or special purpose
languages by using selected programming and metaprogramming features
of the chosen programming language

• Example Concepts – parser generators, parser combinators, quota-
tions, macros, reflection, domain-specific languages

Outcomes 12 through 15 are optional aspects that may vary based on the chosen
language and the particular term.

For this version of the course, we choose to use the Haskell programming language.
We address the optional component associated with outcome 13.

5

	Introduction to Functional Programming
	Motivation
	Course prerequisites
	Course goals
	Desired Student Outcomes

