
Final Exam Comments

• Comprehensive — over everything we have covered during the semester
– nothing below modifies that

• Exam not yet written

• No release of previous final exams or return of graded papers

• Concatenation of the 2018 (and 2017) exams gives some idea of what I
consider important and how I might ask questions

Think about other questions that might be asked in the same areas as
previous exams

• I tend to focus on important concepts (including terminology) and use of
knowledge for problem solving, understanding programs, programming,
language design, etc.

• Final likely contains new questions, examples, coding problems, etc.

Study of previous examples, homeworks, etc. cover the skills

• Programming assignments reinforce ideas from textbook

Assignment #5 works with case study from chapters 41-44

• Chapter 1: Trends over past 70 years and their implications for today’s and
tomorrow’s languages — key firsts in language design and implementation
(Fortran, Lisp, Simula, Smalltalk, ML, Haskell, etc.)

• Chapter 2: Key concepts and terminology from primary programming
paradigms (imperative, declarative, functional, logic, modular, procedural,
etc.)

• Chapter 3: NOT COVERED (but has key concepts/terminology from
object-based and object-oriented programming)

(Used chapters 2-3 in CSci 556 along with Python 3)

• Chapter 4: Basic Haskell programming notation, concepts, and skills

• Chapter 5: Haskell type system (continued later with lists, polymorphism,
first-class functions, abstract data types, type classes, etc.)

• Chapters 6-7: Abstraction — procedural abstraction, stepwise refinement,
data abstraction (abstract data types), contracts, interfaces, information
hiding, etc.

Abstraction ideas continued in later chapters, including the ELI Calculator
language case study

1



• Chapter 8: Not covered directly, but covered evaluation ideas informally
along with chapter 9 and following (time and space complexity and termi-
nation)

• Chapter 9: Recursion styles — backward/forward, linear/nonlinear, tail
recursion, accumulating parameters, etc.

• Chapter 10: DOES NOT EXIST YET (input/output)

Suggests Haskell Wikibook chapter

• Chapters 11-12: NOT COVERED — adds some formality to our informal
software testing approach

(Used chapters 11-12 in 556 along with Pytest)

• Chapters 13-14: First-order polymorphic list programming (including
pattern matching)

• Chapters 15-17: Higher-order polymorphic list programming and function
concepts

• Chapter 18: List comprehensions

• Chapters 19-20: NOT COVERED

Draft chapters have further information on problem solving and program-
ming in Haskell

• Chapter 21: Algebraic Data Types and Haskell programming with them

• Chapter 22: Type classes and overloading

Also covered the Movable Objects example with this (see lecture notes)

• Chapter 23: NOT COVERED

But gives another case study that uses data abstraction (like chapter 7)
and algebraic data types and type classes (like chapters 21-22)

• Chapters 24-39: NOT COVERED (several chapters do not exist)

• Chapter 40: Language processing pipeline – Really slides and excerpt from
Scott’s textbook and from Mitchell’s textbook

• Chapters 41-44: Language processing case study of ELI Calculator language
interpreter — including ideas of concrete and abstract syntax, informal
semantics and evaluation, lexical analysis, parsing, etc.

• Chapters 45-46: NOT COVERED, but continues ELI Calculator language
case study ideas

• Chapter 47: DOES NOT EXIST – Next case study on ELI Imperative
Core language (with variable and function definition, assignments, loops,
function calls, etc.)

2



• Chapters 48-79: DO NOT EXIST – future chapters on other interpreters

• Chapter 80: NOT COVERED – has some math review

3


	Final Exam Comments

