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Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of November 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Add chapter outcomes, etc.
• Complete the recursive descent infix parsing example and subsection
• Extend the parser combinators to enable intermediate language generation

and better error messages
• Consider adding a subsection on standard parser combinator (Parsec) and

generator (Alex, Happy) tool usage
• Consider adding an exercise set to follow the parsing subsections; move

some from current Chapter 10, Exercise Set A
• Add a section on the REPL (Read-Evaluate-Print-Loop) textual interface

11.1 Chapter Introduction

TODO: Update for breakout of Parsing chapter

‘This case study examines how we can represent and process simple arithmetic
expressions using Haskell. We call the language used in this case study the
Expression Language.

The case study examines two different concrete syntaxes for expressions written
as text and an abstract syntax represented as an algebraic data type. It shows
an a hand-coded lexical analyzer and two hand-coded recursive descent parsers
for these syntaxes.

TODO: Add outcomes

11.2 Parsing

A programming language processor uses a parser to determine whether a program
satisfies the grammar for the language’s concrete syntax. The parser typically
constructs some kind of internal representation of the program to enable further
processing.

A common approach to parsing is to divide it into at least two phases:

• A lexical analyzer converts the sequence of characters into a sequence of
low-level syntactic units called tokens. The grammar describing the tokens
is usually a regular grammar, which can be processed efficiently using a
finite state machine.

• A parser converts the sequence of tokens into an initial semantic model (e.g.,
into an abstract syntax tree supported by a symbol table). The grammar
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describing the language’s full syntax is typically a context-free grammar,
which requires more complex mechanisms to process.,

If the language has aspects that cannot be described with a context-free grammar,
then additional phases may be needed to handle issues such as checking types of
variables and expressions and ensuring that variables are declared before they
are used.

Of course, regular grammars are context-free grammars, so a separate lexical
analyzer is not required. But use of a separate lexical analyzer often leads to a
simpler parser and better performance.

However, some approaches to parsing, such as the use of parser combinators,
can conveniently handle lexical issues as a part of the parser.

In this subsection, we use the two-stage approach to parsing of the Expression
Language. We define a lexical analyzer and parsers constructed using a technique
called recursive descent parsing. The parsers construct abstract syntax trees
using the algebraic data type defined in the Abstract Syntax section.

TODO: Discuss parser combinator if that subsection added.

11.3 Lexical Analysis

In computing science, lexical analysis is typically the process of reading a sequence
of characters from a language text and assembling the characters into a sequence
of lexemes, the smallest meaningful syntactic units. In a natural language like
English, the lexemes are typically the words of the language.

The output of lexical analysis is a sequence of lexical tokens (usually just called
tokens). A token associates a syntactic category with a lexeme. In a natural
language, the syntactic category may be the word’s part of speech (noun, verb,
etc.).

We call the program that carries out the lexical analysis a lexical analyzer, lexer,
tokenizer, or scanner. (However, the latter term actually refers to one phase of
the overall process.)

In a programming language, the syntactic categories of tokens consist of entities
such as identifiers, integer literals, and operators.

The “whitespace” characters such as blanks, tabs, and newlines are usually not
tokens themselves. Instead, they are delimiters which define the boundaries of
the other lexemes. However, in some programming languages, the end of a line
or the indentation at the beginning of a line have implicit structural meaning in
the language.

Consider the Expression language infix syntax. The character sequence

30 + ( x1 * 2)
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includes seven tokens:

• integer literal 30
• addition operator +
• left parenthesis symbol (
• identifier x1
• multiplication operator *
• integer literal 2
• right parenthesis symbol )

Tokenization has two stages–a scanner and an evaluator.

A scanner processes the character sequence and breaks it into lexeme strings. It
usually recognizes a language corresponding to a regular grammar, one of the
simplest classes of grammars, and is, hence, based on a finite state machine.
However, in some cases, a scanner may require more complex grammars and
processors.

A token evaluator determines the syntactic category of the lexeme string and
tags the token with this syntactic information.

Sometimes a lexical analyzer program combines the two stages into the same
algorithm.

‘### Prefix syntax

Now let’s consider a lexical analyzer for the prefix syntax for the Expression
language.

File LexExpr.hs gives an example Haskell module that implements a lexical
analyzer for this concrete syntax.

The Expression Language’s prefix syntax includes the following syntactic cat-
egories: identifiers, keywords, integer literals, operators, left parenthesis, and
right parenthesis.

The left and right parenthesis characters are the only lexemes in those two
syntactic categories, respectively.

An identifier is the name for variable or other entity. We define an identifier
to begin with an alphabetic or underscore character and include all contiguous
alphabetic, numeric, or underscore characters that follow. It is delimited by a
whitespace or another character not allowed in an identifier.

As a sequence of characters, a keyword is just an identifier in this language, so
the scanner does not distinguish between two categories. The lexical analyzer
subsequently separates out keywords by checking each identifier against the list
of keywords.

An integer literal begins with a numeric character and includes all contiguous
numeric characters that follow. It is delimited by a whitespace or nonnumeric
character.
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We plan to extend this language with additional operators. To enable flexible
use of the scanner, we design it to collect all contiguous characters from a list
of supported operator characters. Of course, we exclude alphabetic, numeric,
underscore, parentheses, and similar characters from the list for the prefix
Expression language.

The lexer subsequently compares each scanned operator against a list of valid
operators to remove invalid operators.

The language uses keywords in similar ways to operators, so the lexer also
subsequently tags keywords as operators. The current lexical analyzer does not
use the TokKey token category.

The LexExpr module defines a Token algebraic data type, defined below, to
represent the lexical tokens. The constructors identify the various syntactic
categories.

import Values ( NumType, Name, toNumType )
-- e.g., NumType = Int , Name = String

data Token = TokLeft -- left parenthesis
| TokRight -- right parenthesis
| TokNum NumType -- unsigned integer literal
| TokId Name -- names of variables, etc.
| TokOp Name -- names of primitive functions
| TokKey Name -- keywords (no use currently)
| TokOther String -- other characters

deriving (Show, Eq)

The function lexx, shown below, incorporates the scanner and most of the
lexeme evaluator functionality. It takes a string and returns a list of tokens.

import Data.Char ( isSpace, isDigit, isAlpha, isAlphaNum )

lexx :: String -> [Token]
lexx [] = []
lexx xs@(x:xs')

| isSpace x = lexx xs'
| x == ';' = lexx (dropWhile (/='\n') xs')
| x == '(' = TokLeft : lexx xs'
| x == ')' = TokRight : lexx xs'
| isDigit x = let (num,rest) = span isDigit xs

in (TokNum (convertNumType num)) : lexx rest
| isFirstId x = let (id,rest) = span isRestId xs

in (TokId id) : lexx rest
| isOpChar x = let (op,rest) = span isOpChar xs

in (TokOp op) : lexx rest
| otherwise = (TokOther [x]) : lexx xs'
where
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isFirstId c = isAlpha c || c == '_'
isRestId c = isAlphaNum c || c == '_'
isOpChar c = elem c opchars

opchars = "+-*/~<=>!&|@#$%^?:" -- not " ' ` ( ) [ ] { } , . ;

Function lexx pattern matches on the first character of the string and then
collects any additional characters of the token using the higher order function
Data.Char.span. Function span breaks the string into two part–the prefix
consisting of all contiguous characters that satisfy its predicate and the suffix
beginning with the first character that does not.

Boolean function isOpChar returns True for characters potentially allowed in
operator symbols. These are defined in the string opchars, which makes this
aspect of the scanner relatively easy to modify.

Function lexer, shown below, calls lexx and then carries out the following
transformations on the list of tokens:

• TokId tokens for keywords are transformed into the corresponding TokOp
tokens (as defined in association list keywords)

• TokOp tokens for valid operators (as defined in association list opmap) are
transformed if needed and invalid operators are transformed into TokOther
tokens

The lexer does not generate error messages. Instead it tags characters that do
not fit in any lexeme as a TokOther token. The parser can use these as needed
(e.g., to generate error messages).

lexer :: String -> [Token]
lexer xs = markSpecials (lexx xs)

markSpecials :: [Token] -> [Token]
markSpecials ts = map xformTok ts

xformTok :: Token -> Token
xformTok t@(TokId id)

| elem id keywords = TokOp id
| otherwise = t

xformTok t@(TokOp op)
| elem op primitives = t
| otherwise = TokOther op

xformTok t = t

keywords = [] -- none defined currently
primitives = ["+","-","*","/"]

In the above code, the function xformTok transforms any identifier that is a
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defined keyword into an operator token, leaves other identifiers and defined prim-
itive operators alone, and marks everything else with the token type TokOther.

11.3.1 Infix syntax

The lexer for the prefix syntax given in the previous subsection can also be used
for the simple infix syntax. However, future extensions of the language may
require differences in the lexers.

11.4 Recursive Descent Parsing

A recursive descent parser is an approach to parsing languages that have relatively
simple grammars.

It is a top-down parser, a type of parser that begins with start symbol of the
grammar and seeks to determine the parse tree by working down the levels of
the parse tree toward the program (i.e., sentence).

By contrast, a bottom-up parser first recognizes the low-level syntactic units of
the grammar and builds the parse tree upward from these leaves toward the root
(i.e., start symbol). Bottom-up parsers support a wider range of grammars and
tend to be more efficient for production compilers. However, their development
tends to be less intuitive and more complex. We leave discussion of these parsers
to courses on compiler construction.

A recursive descent parser consists of a set of mutually recursive functions. It
typically includes one hand-coded function for each nonterminal of the grammar
and one clause for each production for that nonterminal.

The recursive descent approach works well when the grammar can be transformed
into an LL(k) (especially LL(1)) grammar. Discussion of these techniques are
left to courses on compiler construction.

For an LL(1) grammar, we can write recursive descent parsers that can avoid
backtracking to an earlier point in the parse to start down another path.

For example, consider a simple grammar with with rules:

S ::= A | B
A ::= C D
B ::= { E } -- zero or more occurrence of E
C ::= [ F ] -- zero or one occurrence of F
D ::= '1' | '@' S
E ::= '3'
F ::= '2'

Consider the nonterminal S, which has alternatives A and B.
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• Alternative A can begin with terminal symbols 1, 2, or @.

• Alternaive B can begin with terminal symbol 3 or be empty.

These sets of first symbols are disjoint, so the parser can distinguish among
the alternatives based on the first terminal symbol. (Hence, the grammar is
backtrack free.)

11.4.1 Constructing recursive descent parsers

A simple recognizer for the grammar above could include functions similar to
those shown below. We consider the five different situations for nonterminals S,
A, B, C, and E.

In the Haskell code, a parsing function takes a String with the text of the
expression to be processed and returns a tuple (Bool,String) where the first
component indicates whether or not the parser succeeded (i.e., the output of the
parse) and the second component gives the new state of the input.

If the first component is True, then the second component holds the input
remaining after the parse. If the first component is False, then the second
component is the remaining part of the input to be processed after the parser
failed.

Of course, instead of strings, the parser could work on lists of tokens or other
symbols.

1. Alternatives: S ::= A | B

parseS :: String -> (Bool,String) -- A | B
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _ ) ->

case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A & B fail

Function parseS succeeds whenever any alternative succeeds. Otherwise,
it continues to check subsequent alternatives. It fails if the final alternative
fails.

If there are more than two alternatives, we can nest each additional
alternative more deeply within the conditional structure. (That is, we
replace the parseB failure case value with a case expression for the third
option. Etc.)

2. Sequencing: A ::= C D
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parseA :: String -> (Bool,String) -- C D
parseA xs =

case parseC xs of -- try C
(True, ys) ->

case parseD ys of -- then try D
(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- D fails

(False, _ ) -> (False,xs) -- C fails

Function parseA fails whenever any component fails. Otherwise, it contin-
ues to check subsequent components. It succeeds when the final component
succeeds.

If there are more than two components in sequence, we nest each additional
component more deeply within the conditional structure. (That is, we
replace parseD xs with case parseD xs of ....)

3. Repetition zero or more times: B ::= { E }

parseB :: String -> (Bool,String) -- { E }
parseB xs =

case parseE xs of -- try E
(True, ys) -> parseB ys -- one E, try again
(False, _) -> (True,xs) -- stop, succeeds

Function parseB always succeeds if parseE terminates. However, it may
succeed for zero occurrences of E or for some positive
number of occurrences.

4. Optional elements: C ::= [ F ]

parseC :: String -> (Bool,String) -- [ F ]
parseC xs =

case parseF xs of -- try F
(True, ys) -> (True,ys)
(False, _ ) -> (True,xs)

Function parseC always succeeds if parseF terminates. However, it may
succeed for at most one occurrence of F.

5. Base cases to parse low-level syntactic elements: E ::= '3'

parseE :: String -> (Bool,String)
parseE (x:xs') = (x == '3', xs')
parseE xs = (False, xs )

On success in any of these cases, the new input state is the string remaining
after the successful alternative.

On failure, the input state should be left unchanged by any of the functions.
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To use the above templates, it may sometimes be necessary to refactor the rules
that involve more than one of the above cases. For example, consider the rule

D ::= '1' | '@' S

which consists of two alternatives, the second of which is itself a sequence. To
see how to apply the templates straightforwardly, we can refactor D to be the
two rules:

D ::= '1' | DS
DS ::= '@' S

In addition to the above parsers for the various rules, we might have a function
parse that calls the top-level parser (parseS) and ensures that all the input is
parsed.

parse :: String -> Bool
parse xs =

case parseS xs of
(True, []) -> True
(_, _ ) -> False

See file ParserS03.hs for experimental Haskell code for this example recursive
descent parser.

To have a useful parser, the above prototype functions likely need to be modified
to build the intermediate representation and to return appropriate error messages
for unsuccessful parses.

The above prototype functions use Haskell, but a similar technique can be used
with any language that supports recursive function calls.

11.4.2 Prefix syntax

This subsection describes an example recursive descent parser for the Expression
Language’s prefix syntax. The complete code for the ParsePrefixExpr module
is given in the file ParsePrefixExpr.hs.

As given in a previous subsection, the prefix parser embodies the the following
grammar:

<expression> ::= <var> | <val> | <operexpr>
<var> ::= <id>
<val> ::= [ '-' ] <unsigned>
<operexpr> ::= '(' <operator> <operandseq> ')'
<operandseq> ::= { <expression> }
<operator> ::= '+' | '*' | '-' | '/' | ...

The ParserPrefixExpr module imports and uses the LexExpr module) for
lexical analysis. In particular, it uses the algebraic data type Token, types
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NumType and Name, and function lexer.

import Values ( NumType, Name, toNumType )

data Token = TokLeft -- left parenthesis
| TokRight -- right parenthesis
| TokNum NumType -- unsigned integer literal
| TokId Name -- names of variables, etc.
| TokOp Name -- names of primitive functions
| TokKey Name -- keywords
| TokOther String -- other characters

deriving (Show, Eq)

lexer :: String -> [Token]

For the prefix grammar above, the nonterminals <id> and <unsigned> and the
terminals are parsed into their corresponding tokens by the lexical analyzer.

TODO: Update this code and reference. The incomplete module
TestPrefixExpr (in file TestPrefixExpr.hs) provides some testing of the
prefix parser.

The output of the parser is an abstract syntax tree constructed with the algebraic
data type Expr defined in the previous chapter. This is in the Abstract Syntax
Tree module.

import Values ( ValType, Name )

data Expr = Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Name
| Val ValType

11.4.2.1 Parse <expression>

Now let’s build a recursive descent parser using the method described in the
previous subsection. We begin with the start symbol <expression>.

The parsing function parseExpression, shown below, implements the following
BNF rule:

<expression> ::= <var> | <val> | <operexpr>

It uses the recursive descent template #1 with three alternatives.

type ParErr = String

parseExpression :: [Token] -> (Either ParErr Expr, [Token])
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parseExpression xs =
case parseVar xs of

r@(Right _, _) -> r -- <var>
_ ->

case parseVal xs of
r@(Right _, _) -> r -- <val>
_ ->

case parseOperExpr xs of
r@(Right _, _) -> r -- <operexpr>
(Left m, ts) -> (missingExpr m ts, ts)

missingExpr m ts =
Left ("Missing expression at " ++ (showTokens (pref ts))

++ "..\n..Nested error { " ++ m ++ " }")

Function parseExpression takes a Token list and attempts to parse an
<expression>. If the parse succeeds, the function returns a pair consisting
of the Right value of an Either wrapping the corresponding Expr abstract
syntax tree and the list of input Tokens remaining after the Expr. If the parse
fails, then the function returns an error in a Left value for theEither and the
unchanged list of input Tokens.

We define an auxiliary function missingExpr to generate an appropriate error
message.

The function parse, shown below, is the primary entry point for the
ParsePrefixExpr module. It first calls the lexical analysis function lexer
(from the module LexExpr) on the input list of characters and then calls the
parsing function parseExpression with the corresponding list of tokens.

If a parsing error occurs or if there are leftover tokens, then the function returns
an appropriate error message.

parse :: String -> Either ParErr Expr
parse xs =

case lexer xs of
[] -> incompleteExpr xs
ts ->

case parseExpression ts of
(ex@(Right _), []) -> ex
(ex@(Left _), _ ) -> ex
(ex, ss) -> extraAtEnd ex ss

incompleteExpr xs =
Left ("Incomplete expression: " ++ xs)

extraAtEnd ex xs =
Left ("Nonspace token(s) \"" ++ (showTokens xs) ++
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"\" at end of the expression \"" ++ (show ex) ++ "\"")

11.4.2.2 Parse <var>

Function parseVar implements the BNF rule:

<var> ::= <id>

Variable <id> denotes an identifier token recognized by the lexer. So we im-
plement function parseVar as a base case of the recursive descent parser (i.e.,
template #5).

parseVar :: [Token] -> (Either ParErr Expr, [Token])
parseVar ((TokId id):ts) = (Right (Var id),ts)
parseVar ts = (missingVar ts, ts)

missingVar ts =
Left ("Missing variable at " ++ (showTokens (pref ts)))

Function parseVar has the same type signature as parseExpression. It at-
tempts to match an identifier token at the front of the token sequence. If it finds
an identifier, it transforms the token to a Var expression and returns it with the
remaining token list. Otherwise, it returns an error message and the unchanged
token list.

11.4.2.3 Parse <val>

Function parseVal implements the BNF rule:

<val> ::= [ '-' ] <unsigned>

To implement this rule, we can refactor it into two rules that correspond to the
recursive descent template functions:

<val> ::= <optminus> <unsigned>
<optminus> ::= [ '-' ]

Then <val> can be implemented using the sequencing (#2) prototype,
<optminus> using the optional element (#4) prototype, and <unsigned> and -
using base case (#5) prototypes.

However, <unsigned> denotes a numeric token and - denotes a single operator
token. Thus we can easily implement parseVal as a base case of the recursive
descent parser.

parseVal :: [Token] -> (Either ParErr Expr, [Token])
parseVal ((TokNum i):ts) = (Right (Val i), ts)
parseVal ((TokOp "-"):(TokNum i):ts) = (Right (Val (-i)), ts)
parseVal ts = (missingVal ts, ts)
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missingVal ts =
Left ("Missing value at " ++ (showTokens (pref ts)))

Function parseVal has the same type signature as parseExpression. It at-
tempts to match a numeric token, which is optionally preceded by a negative
sign, at the front of the token sequence. If it finds this, it transforms the tokens
to a Val expression and returns the expression and the remaining token list.
Otherwise, it returns an error message and the unchanged token list.

11.4.2.4 Parse <operexpr>

Function parseOperExpr implements following BNF rule:

<operexpr> ::= "(" <operator> <operandseq> ")"

It uses a modified version of recursive descent template #2 for sequences of
terms.

parseOperExpr :: [Token] -> (Either ErrMsg Expr, [Token])
parseOperExpr xs@(TokLeft:(TokOp op):ys) = -- ( <operator>

case parseOperandSeq ys of -- <operandseq>
(args, zs) ->

case zs of -- )
(TokRight:zs') -> (makeExpr op args, zs')
zs' -> (missingRParen zs, xs)

-- ill-formed <operexpr>s
parseOperExpr (TokLeft:ts) = (missingOp ts, ts)
parseOperExpr (TokRight:ts) = (invalidOpExpr ")", ts)
parseOperExpr ((TokOther s):ts) = (invalidOpExpr s, ts)
parseOperExpr ((TokOp op):ts) = (invalidOpExpr op, ts)
parseOperExpr ((TokId s):ts) = (invalidOpExpr s, ts)
parseOperExpr ((TokNum i):ts) = (invalidOpExpr (show i), ts)
parseOperExpr [] = (incompleteExpr, [])

missingRParen ts =
Left ("Missing `)` at " ++ (show (take 3 ts)))

missingOp ts =
Left ("Missing operator at " ++ (show (take 3 ts)))

invalidOpExpr s =
Left ("Invalid operation expression beginning with " ++ s)

incompleteExpr = Left "Incomplete expression"

Function parseOperExpr has the same type signature as parseExpression. It
directly matches against the first two tokens to see whether they are a left
parenthesis and an operator, respectively, rather than calling separate functions
to parse each. If successful, it then parses zero or more operands and examines
the last token to see whether it is a right parenthesis.
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If the operator expression is ill-formed, the function returns an appropriate error
message.

The function parseOperExpr delegates the construction of the corresponding
Expr (i.e., abstract syntax tree) to function makeExpr, which we discuss later in
the subsection.

The values yielded by the components of <operexpr> must be handled differently
than the previous components of expressions we have examined. They are not
themselves Expr values.

• ( and ) denote the structure of the expression but do not have any output.

• <operator> does not itself yield a complete Expr. It must be combined
with some number of operands to yield an expression. The number varies
depending upon the particular operator. We pass a string to makeExpr to
denote the operator.

• <operandseq> yields a possibly empty list of Expr values. We pass an
Expr list to makeExpr to denote the operands.

11.4.2.5 Parse <operandseq>

Function parseOperandSeq implements the BNF rule:

<operandseq> ::= { <expression> }

It uses the recursive descent template #3 for repeated symbols.

parseOperandSeq :: [Token] -> ([Expr],[Token])
parseOperandSeq xs =

case parseExpression xs of
(Left _, _ ) -> ([],xs)
(Right ex, ys) ->

let (exs,zs) = parseOperandSeq ys
in (ex:exs,zs)

The function parseOperandSeq takes a token list and collects a list of 0 or more
operand Exprs. An empty list means that no operands were found.

11.4.2.6 AST construction (makeExpr)

Operators in the current abstract syntax take a fixed number of operands. Add
and Mul each take two operands, but a negation operator would take one operand
and a conditional “if” operation would take three.

However, the current concrete prefix syntax does not distinguish among the
different operators and the number of operands they require. It allows any
operator in an <operexpr> to have any finite number of operands.
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We could, of course, define a grammar that distinguishes among the operators,
but we choose to keep the grammar flexible, thus enabling easy extension. We
handle the operator-operand matching in the makeExpr function using data
structures to define the mapping.

Thus, function makeExpr takes the operator string and a list of operand Exprs
and constructs an appropriate Expr. It uses function arity to determine the
number of operands required for the operator and then calls the appropriate
opConsN function to construct the Expr.

makeExpr :: String -> [Expr] -> Either ErrMsg Expr
makeExpr op exs =

case arity op of
0 -> opCons0 op exs -- not implemented
1 -> opCons1 op exs
2 -> opCons2 op exs
3 -> opCons3 op exs
4 -> opCons4 op exs -- not implemented
5 -> opCons5 op exs -- not implemented
_ -> opConsX op exs -- not implemented

Function arity takes an operator symbol and returns the number of operands
that operator requires. It uses the arityMap association list to map the operator
symbols to the number of arguments expected.

import Data.Maybe

arityMap = [ ("+",2), ("-",2), ("*",2), ("/",2) ]
-- add (operator,arity) pairs as needed

arity :: String -> Int
arity op = fromMaybe (-1) (lookup op arityMap)

Function opCons2 takes a binary operator string and an operand list with two
elements and returns the corresponding Expr structure wrapped in a Right. An
error is denoted by passing back an error message wrapped in a Left.

assocOpCons2 =
[ ("+",Add), ("-",Sub), ("*",Mul), ("/",Div) ]
-- add new pairs as needed

opCons2 :: String -> [Expr] -> Either ParErr Expr
opCons2 op exs =

case length exs of
2 -> case lookup op assocOpCons2 of

Just c -> Right (c (exs!!0) (exs!!1))
Nothing -> invalidOp op

n -> arityErr op n

invalidOp op =
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Left ("Invalid operator '" ++ op ++ "'")
arityErr op n =

Left ("Operator '" ++ op ++ "' incorrectly called with "
++ (show n) ++ " operand(s)")

Currently, the only supported operators are the binary operators +, -, *, and /.
These map to the binary Expr constructors Add, Sub,Mul, and Div. (These are
two-argument functions.)

If we extend the supported operators, then we must extend the definitions
of arityMap and assocOpCons2 and add new definitions for opConsN and
assocOpConsN for other arities N. (We may also need to modify the LexExpr
module and the definition of Expr.)

For now, we respond to unknown operators using function opConsX and return
an appropriate error message. (In the future, this function may be redefined to
support operators with variable numbers of operands.)

opConsX :: String -> [Expr] -> Either ErrMsg Expr
opConsX op exs = unsupportedOp op

unsupportedOp op = Left ("Unsupported operator '" ++ op ++ "'")

11.4.3 Infix syntax (UNFINISHED)

TODO: Update the parser to reflect the grammar change and recursive descent
explanation.

TODO: Describe the recursive descent infix parser in module ParseInfixExpr.hs.
An incomplete module that does some testing is TestInfixExpr.hs.

11.5 Source Code and Module Dependencies

As we saw in the previous chapter, an Expression Language interpreter consists
of 7 modules with the module dependencies shown in Figure 1.

The Haskell source code for the Expression Language modules discussed in this
chapter are linked below:

• Lexical_analyzer module LexExpr common to both prefix and infix parsers

• Prefix syntax

– Recursive descent Parser module for prefix language ParsePrefixExpr

– REPL module for prefix syntax PrefixExprREPL

• Infix syntax

– Recursive descent Parser module for infix language ParseInfixExpr
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Figure 1: Expression Language module dependencies

– REPL module for infix syntax InfixExprREPL

The Haskell source code for the other Expression Language modules were dis-
cussed in the previous chapter. These are linked below:

• Evaluator module EvalExpr
• Abstract_Synax module AbSynExpr
• Environments module Environments
• Values module Values

The main entry points for use of the interpreters are the REPLs.

11.6 Parsing Combinators

In a previous section, we examined a set of prototype parsing functions and then
used them as patterns for hand-coding of recursive descent parsing functions.
We can benefit by generalizing these functions and collecting them into a library.

11.6.1 State actions and combinators

Consider parseS, one of the prototype parsing functions from a previous section.
It parses the grammar rule S ::= A | B, which has two alternatives.

parseS :: String -> (Bool,String)
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _ ) ->
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case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A,B fail

Note that parseS and the other prototype parsing functions have the type:

String -> (Bool,String)

The occurrence of type String in the argument of the function represents the
state of the input before evaluation of the function; the second occurrence of
String represents the state after evaluation. The type Bool represents the result
of the evaluation.

In an imperative program, the state is often left implicit and only the result
type is returned. However, in a purely functional program, we must also make
both the state change explicit.

Functions that have a type similar to parseS are called state actions or state
transitions. We can generalize this parsing state transition as a function type:

type Parser a b = a -> (b,a)

In the case of parseS, we specialize this to:

Parser String Bool

In the case of richer parsing case studies for the prefix and infix parsers, we
specialize this type as:

Parser [Token] (Either ErrMsg Expr)

Given the Parser type, we can define a set of combinators that allow us to
combine simpler parsers to construct more complex parsers. These combinators
can pass along the state implicitly, avoiding some tedious and repetitive work.

We can define a combinator parseAlt that generalizes the parseS prototype
function above. It implements a recognizer, so we fix type b to Bool, but leave
type argument a general.

parseAlt :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseAlt p1 p2 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _ ) ->

case p2 xs of
(True, ys) -> (True, ys)
(False, _ ) -> (False, xs)

Note the use of the anonymous function in the body. Function parseAlt takes
two Parser values and then returns a Parser value. The Parser function
returned binds in the two component function values. When this function is
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applied to the parser input (which is the argument of the anonymous function),
it applies the two component parsers as needed.

We can easily redefine parseS in terms of the parseAlt combinator and simpler
parsers parseA and parseB.

parseS = parseAlt parseA parseB

Given parsing input inp, we can invoke the parser with the expression:

parseS inp

Note that this formulation enables us to handle the passing of state among the
component parsers implicitly, much as we can in an imperative computation.
But it still preserves the nature of purely functional computation.

11.6.2 Completing a combinator library

Now consider the parseA prototype, which implements a two-component se-
quencing rule A ::= C D.

parseA xs =
case parseC xs of -- try C

(True, ys) -> -- then try D
case parseD ys of

(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- both C, D fail

(False, _ ) -> (False,xs) -- C fails

As with parseS, we can generalize parseA as a combinator parseSeq.

parseSeq :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseSeq p1 p2 =

\xs ->
case p1 xs of

(True, ys) ->
case p2 ys of

t@(True, zs) -> t
(False, _ ) -> (False, xs)

(False, _ ) -> (False, xs)

Thus we can redefine parseA in terms of the parseSeq combinator and simpler
parsers parseC and parseD.

parseA = parseSeq parseC parseD

Similarly, we consider the parseB prototype, which implements a repetition rule
B ::= { E }.

parseB xs =
case parseE xs of -- try E
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(True, ys) -> parseB ys -- try again
(False, ys) -> (True,xs) -- stop

As above, we generalize this as combinator parseStar.

parseStar :: Parser a Bool -> Parser a Bool
parseStar p1 =

\xs ->
case p1 xs of

(True, ys) -> parseStar p1 ys
(False, _ ) -> (True, xs)

We can redefine parseB in terms of combinator parseStar and simpler parser
parseE.

parseB = parseStar parseB

Finally, consider parsing prototype parseC, which implements an optional rule
C ::= [ F ].

parseC xs =
case parseF xs of -- try F

(True, ys) -> (True,ys)
(False, _ ) -> (True,xs)

We generalize this pattern as parseOpt, as follows.

parseOpt :: Parser a Bool -> Parser a Bool
parseOpt p1 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _ ) -> (True, xs)

We can thus redefine parseC in terms of simpler parser parseF and combinator
parseOpt.

parseC = parseOpt parseF

In this simple example grammar, function parseD is a simple instance of a
sequence and parseE and parseF are simple parsers for symbols. These can be
directly implemented as basic parsers, as before. However, the technique work if
these are more complex parsers built up from combinators.

For convenience and completeness, we include extended alternative and sequenc-
ing combinators and parsers that always fail or always succeed.

parseAltList :: [Parser a Bool] -> Parser a Bool
parseSeqList :: [Parser a Bool] -> Parser a Bool
parseFail, parseSucceed :: Parser a Bool

The combinators in this library are in the Haskell module ParserComb.hs. A
module that does some testing is TestParserComb.hs.

21

ParserComb.hs
TestParserComb.hs


TODO: Update and document the Parser Combinator library code.

11.6.3 Adding parse tree generations (UNFINISHED)

TODO: Expand this library to allow returns of “parse trees” and error messages.

11.7 Standard libraries for parsing (UNFINISHED)

There are a number of relatively standard parsing combinator libraries–e.g., the
library Parsec. Readers who wish to develop other parsers may want to study
that library.

11.8 Exercises

TODO
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I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed. The HTML version of this document
may require use of a browser that supports the display of MathML.
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11.11 Terms and Concepts

TODO
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