
CSci 450, Org. of Programming Languages

Chapter 10
Expression Language Syntax and Semantics

H. Conrad Cunningham

7 November 2017

Contents
10.1 Chapter Introduction . 1
10.2 Concrete Syntax . 2

10.2.1 Grammars . 2
10.2.1.1 Context-free grammars and BNF 3
10.2.1.2 Derivations . 4
10.2.1.3 Regular grammars 4

10.2.2 Infix syntax . 6
10.2.3 Prefix syntax . 7

10.3 Abstract Syntax . 9
10.3.1 Abstract syntax tree data type 11
10.3.2 Values and variable names 14

10.4 Associative Data Structures . 14
10.5 Semantics . 15

10.5.1 Environments . 15
10.5.2 Values of AST nodes . 16
10.5.3 Evaluation function . 17

10.6 Read-Evaluate-Print Loop (REPL) 19
10.7 Simplification . 19
10.8 Symbolic Differentiation . 20
10.9 Source Code and Module Dependencies 20
10.10Exercises . 21
10.11Acknowledgements . 23
10.12References . 24
10.13Terms and Concepts . 24

Copyright (C) 2017, H. Conrad Cunningham

1

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of November 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Add chapter outcomes, etc.
• Make sure the examples and exercises to use a consistent set of features
• Consider various functions on ASTs – size, determine free variables, convert

to infix and prefix concrete syntax
• Consider an alternative evaluator that uses substitution in a separate phase
• Consider adding exercises for the concrete syntax and abstract syntax
• Add a section on the REPL (Read-Evaluate-Print-Loop) textual interface

10.1 Chapter Introduction

The case study in this and the following two chapters (Chapters 10-12) examines
how we can represent and process simple arithmetic expressions using Haskell.
We call the language used in this case study the Expression Language.

Chapter 10 examines two different concrete syntaxes for expressions written as
text and an abstract syntax represented as an algebraic data type. Chapter 11
considers the parsing of the syntaxes.

Chapter 10 explores direct interpretation (evaluation) of the abstract syntax trees
(ASTs) and manipulation of the trees to simplify or differentiate the expressions.

Chapter 12 looks at a simple Stack Virtual Machine with an instruction set
represented as another algebraic data type and how to translate (i.e., compile),
how to execute the machine, and how to translate the abstract syntax trees to
sequences of instructions.

We will extend it with other features in later chapters.

TODO: Add outcomes

10.2 Concrete Syntax

The Expression Language can be represented in human-readable text strings
in forms similar to traditional mathematical and programming notations. The
structure of these textual expressions is called the concrete syntax of the expres-
sions.

In this case study, we examine two possible concrete syntaxes: a familiar infix
syntax and a (probably less familiar) parenthesized prefix syntax.

But, first, let’s consider how we can describe the syntax of a language.

2

10.2.1 Grammars

We usually describe the syntax of a language using a grammar.

Formally, a grammar consists of a tuple (V, T, S, P), where

• V is a finite set of variable (or nonterminal) symbols
• T is a finite set of terminal symbols (called the alphabet)
• S ∈ V is the start (or goal) symbol
• P is a finite set of production rules
• V and T are disjoint

Production rules describe how the grammar transforms one sequence of symbols
to another. The rules have the general form

x → y

where x and y are sequences of symbols from V ∪ T such that x has length of at
least one symbol.

A sentence in a language consists of any finite sequence of terminal symbols that
can be generated from the start symbol of a grammar by a finite sequence of
productions from the grammar.

We call a sequence of productions that generates a sentence a derivation for that
sentence.

Any intermediate sequence of symbols in a derivation is called a sentential form.

The language generated by the grammar is the set of all sentences that can be
generated by the grammar.

10.2.1.1 Context-free grammars and BNF

To express the syntax of programming languages, we normally restrict ourselves
to the family of context-free grammars (and its subfamilies). In a context-free
grammar (CFG), the production rules have the form

A → y

where A ∈ V and y is a sequence of zero or more symbols from V ∪ T . This
means that an occurence of nonterminal A can be replaced by the sequence x.

We often express a grammar using a metalanguage such as the Backus-Naur
Form (BNF).

For example, consider the following BNF description of a grammar for the
unsigned binary integers:

<binary> ::= <digit>
<binary> ::= <digit> <binary>
<digit> ::= '0'

3

%3Chttps://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus-Naur_form
https://en.wikipedia.org/wiki/Backus-Naur_form

<digit> ::= '1'

The nonterminals are the symbols shown in angle brackets: <binary> and
<digit>.

The terminals are the symbols shown in single quotes: '0' and '1'.

The production rules are shown with a nonterminal on the left side of the
metasymbol ::= and its replacement sequence of nonterminal and terminal
symbols on the right side.

Unless otherwise noted, the start symbol is the nonterminal on the left side of
the first production rule.

For multiple rules with the same left side, we can use the | metasymbol to write
the alternative right sides concisely. The four rules above can be written as
follows:

<binary> ::= <digit> | <digit> <binary>
<digit> ::= '0' | '1'

We can also use the extended BNF metasymbols:

• { and } to denote that the symbols between the braces are repeated zero
or more times

• [and] to denote that the symbols between the brackets are optional (i.e.,
occur at most once)

10.2.1.2 Derivations

Consider a derivation of the sentence 101 using the grammar for unsigned binary
numbers above.

• Start symbol – <binary>
• Apply rule 2 – <digit> <binary>
• Apply rule 2 – <digit> <digit> <binary>
• Apply rule 3 – <digit> 0 <binary>
• Apply rule 4 – 1 0 <binary>
• Apply rule 1 – 1 0 <digit>
• Apply rule 4 – 1 0 1

This is not the only possible derivation for 101. Let’s consider a second derivation
of 101.

• Start symbol – <binary>
• Apply rule 2 – <digit> <binary>
• Apply rule 4 – 1 <binary>
• Apply rule 2 – 1 <digit> <binary>
• Apply rule 3 – 1 0 <binary>
• Apply rule 1 – 1 0 <digit>

4

• Apply rule 4 – 1 0 1

The second derivation applies the same rules the same number of times, but
it applies them in a different order. This case is called the leftmost derivation
because it always replaces the leftmost nonterminal in the sentential form.

Both of the above derivations can be represented by the derivation tree (or parse
tree) shown in Figure 1. (The numbers below the nodes show the rules applied.)

10.2.1.3 Regular grammars

The grammar above for binary numbers is a special case of a context-free grammar
called a right-linear grammar. In a right-linear grammar, all productions are of
the forms

A → xB
A → x

where A and B are nonterminals and x is a sequence of zero or more terminals.
Similarly, a left-linear grammar must have all productions of the form:

A → Bx
A → x

A grammar that is either right-linear or left-linear is called a regular grammar .
(Note that all productions in a grammar must satisfy either the right- or left-linear
definitions. They cannot be mixed.)

We can recognize sentences in a regular grammar with a simple “machine”
(program) – a deterministic finite automaton (dfa).

In general, we must use a more complex “machine” – a pushdown automaton
(PDA)– to recognize a context-free grammar.

We leave a more detailed study of regular and context-free grammars to courses
on formal languages, automata, or compiler construction.

Now let’s consider the concrete syntaxes for the Expression language–first infix,
then prefix.

10.2.2 Infix syntax

An infix syntax for expressions is a syntax in which most binary operators
appear between their operands as we tend to write them in mathematics and in
programming languages such as Java and Haskell. For example, the following
are intended to be valid infix expressions:

3
-3
x

5

https://en.wikipedia.org/wiki/Regular_grammar

Figure 1: Derivation (parse) tree for binary number 101

6

1+1
x + 3
(x + y) * (2 + z)

For example, we can present the concrete syntax of our core Expression Language
with the grammar below. Here we just consider expressions made up of decimal
integer constants; variable names; binary operators for addition, subtraction,
multiplication, and division; and parentheses to delimit nested expressions.

We express the upper levels of the infix expression’s syntax with the following
context-free grammar where <expression> is the start symbol.

<expression> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <var> | <val>

| '(' <expression> ')'
<val> ::= ['-'] <unsigned>
<var> ::= <id>
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'

Normally we want operators such as multiplication and division to bind more
tightly than addition and subtraction. That is, we want expression x + y * z to
have the same meaning as x + (y * z). To accomplish this in the context-free
grammar, we position <addop> in a higher-level grammar rule than <mulop>.

We can express the lower (lexical) level of the expression’s grammar with the
following production rules:

<id> ::= <firstid> | <firstid> <idseq>
<idseq> ::= <restid> | <restid> <idseq>
<firstid> ::= <alpha> | '_'
<restid> ::= <alpha> | '_' | <digit>
<unsigned> ::= <digit> | <digit> <unsigned>
<digit> ::= any numeric character
<alpha> ::= any alphabetic character

The variables <digit> and <alpha> are essentially terminals. Thus the above
is a regular grammar. (We can also add the rules for recognition of <addop>
and <mulop> and rules for recognition of the terminals (,), and - to the regular
grammar.)

We assume that identifiers and constants extend as far to the “right” as possible.
That is, an <id> begins with an alphabetic or underscore character and extends
until it is terminated by some character other than an alphabetic, numeric, or
underscore character (e.g., by whitespace or special character). Similarly for
<unsigned>.

Otherwise, the language grammar ignores whitespace characters (e.g., blanks,
tabs, and newlines). The language also supports end of line comments, any

7

characters on a line following a -- (double dash).

We can use a parsing program (i.e., a parser) to determine whether a concrete
expression (e.g., 1 + 1) satisfies the grammar and to build a corresponding parse
tree.

Aside: In a previous subsection, we use the term derivation tree to refer to a tree
that we construct from the root toward the leaves by applying production rules
from the grammar. We usually call the same tree a parse tree if we construct it
from the leaves (a sentence) toward the root.

Figure 2 shows the parse tree for infix expression 1 + 1. It has <expression>
at its root. The children of a node in the parse tree depend upon the grammar
rule application needed to generate the concrete expression. Thus the root
<expression> has either one child–a <term> subtree–or three children– a <term>
subtree, an <addop> subtree, and an <expression> subtree.

If the parsing program returns a boolean result instead of building a parse tree,
we sometimes call it a recognizer program.

10.2.3 Prefix syntax

An alternative is to use a parenthesized prefix syntax for the expressions. This is
a syntax in which expressions involving operators are of the form

(op operands)

where op denotes some “operator” and operands denotes a sequence of zero or
more expressions that are the arguments of the given operator. This is a syntax
similar to the language Lisp.

In this syntax, the examples from the subsection on the infix syntax can be
expressed something like:

3
3
x
(+ 1 1)
(+ x 3)
(* (+ x y) (+ 2 z))

We express the upper levels of a prefix expression’s syntax with the following
context-free grammar, where <expression> is the start symbol.

<expression> ::= <var> | <val> | <operexpr>
<var> ::= <id>
<val> ::= ["-"] <unsigned>
<operexpr> ::= '(' <operator> <operandseq> ')'
<operandseq> ::= { <expression> }
<operator> ::= '+' | '*' | '-' | '/' | ...

8

https://en.wikipedia.org/wiki/Parsing

Figure 2: Parse tree for infix 1 + 1

9

We can express the lower (lexical) level of the expression’s grammar with basically
the same regular grammar as with the infix syntax. (We can also add the rule
for recognition of <operator> and for recognition of the terminals (,), and -
to the regular grammar

The parse tree for prefix expression (+ 1 1) is shown in Figure 3.

Because the prefix syntax expresses all operations in a fully parenthesized form,
there is no need to consider the binding powers of operators. This makes parsing
easier.

The prefix also makes extending the language to other operators–and keywords–
much easier. Thus we will primarily use the prefix syntax in this and other cases
studies.

We return to the problem of parsing expressions in a later subsection.

10.3 Abstract Syntax

The abstract syntax of an expression seeks to represent only the essential aspects
of the expression’s structure, ignoring nonessential, representation-dependent
details of the concrete syntax.

For example, parentheses represent structural details in the concrete syntaxes
given in the previous subsections. This structural information can be represented
directly in the abstract syntax; there is no need for parentheses to appear in the
abstract syntax.

We can represent arithmetic expressions conveniently using a tree data structure,
where the nodes represent operations (e.g., addition) and leaves represent values
(e.g., constants or variables). This representation is called a abstract syntax tree
for the expression.

10.3.1 Abstract syntax tree data type

In Haskell, we can represent an abstract syntax trees using algebraic data types.
Such types often enable us to express programs concisely by using pattern
matching.

For the Expression Language, we define the Expr data type (in the AbSynExpr
module) to describe the abstract syntax tree.

import Values (ValType, Name)

data Expr = Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

10

AbSynExpr.hs
AbSynExpr.hs

Figure 3: Parse tree for prefix (+ 1 1)

11

| Var Name
| Val ValType

-- deriving Show?

instance Show Expr where
show (Val v) = show v
show (Var n) = n
show (Add l r) = showParExpr "+" [l,r]
show (Sub l r) = showParExpr "-" [l,r]
show (Mul l r) = showParExpr "+" [l,r]
show (Div l r) = showParExpr "/" [l,r]

showParExpr :: String -> [Expr] -> String
showParExpr op es =

"(" ++ op ++ " " ++ showExprList es ++ ")"

showExprList :: [Expr] -> String
showExprList es = Data.List.intercalate " " (map show es)

Above in type Expr, the constructors Add, Sub, Mul, and Div represent the addi-
tion, subtraction, multiplication, and division, respectively, of the two operand
subexpressions, Var represents a variable with a name, and Val represents a
constant value.

Note that this abstract syntax is similar to the (Lisp-like) parenthesized prefix
syntax described in the previous subsection.

We make type Expr an instance of class Show. We do not derive or define an
instance of the Eq class because direct structural equality of trees may not be
how we want to define equality comparisons.

We can thus express the example expressions from the Concrete Syntax subsection
as follows:

Val 3 -- 3
Val (-3) -- -3
Var "x" -- x
Add (Val 1) (Val 1) -- 1+1
Add (Var "x") (Val 3) -- x + 3

-- (x + y) * (2 - z)
Mul (Add (Var "x") (Var "y")) (Sub (Val 2) (Var "z"))

Figures 5 and 6 show abstract syntax trees for two example expressions above.

In the following chapter on parsing, we develop parsers for both the prefix and
infix syntaxes. Both parsers construct abstract syntax trees using the algebraic
data type Expr.

12

Figure 5: Abstract syntax tree for 1 + 1 and (+ 1 1)

10.3.2 Values and variable names

The Expression Language restricts values to ValType. The Values module
indirectly defines this type synonym to be Int.

The abstract syntax allows a name to be represented by any string (i.e., type
alias Name, which is defined to be String in the Values module). We likely
want to restrict names to follow the usual “identifier” syntax. The parser for
the concrete syntax should enforce this restriction. Or we could define Haskell
functions to parse and construct identifiers, such as the functions below.

import Data.Char (isAlpha, isAlphaNum)

getId :: String -> (Name,String)
getId [] = ([],[])
getId xs@(x:_)

| isFirstId x = span isRestId xs
| otherwise = ([],xs)

where
isFirstId c = isAlpha c || c == '_'
isRestId c = isAlphaNum c || c == '_'

13

Values.hs

Figure 6: Abstract syntax tree for (x + y) * (2 - z) and (* (+ x y)
(- 2 z))

14

identifier :: String -> Maybe Name
identifier xs =

case getId xs of
(xs@(_:_),[]) -> Just xs
otherwise -> Nothing

The getId function takes a string and parses an identifier at the beginning of the
string. A valid identifier must begin with an alphabetic or underscore character
and continue with zero or more alphabetic, numeric, or underscore characters.

The getId function uses the higher order function span to collect the characters
that form the identifier. This function takes a predicate and returns a pair, of
which the first component is the prefix string satisfying the predicate and the
second is the remaining string.

In the following chapter, we examine how to parse an expression’s concrete
syntax to build an abstract syntax tree.

10.4 Associative Data Structures

TODO: Modify this subsection to account for the introduction of this concept in
the Algebraic Data Type chapter.

In language processing, we often need to associate some key (e.g., a variable
name) with its value. There are several names for this type of data structure –
associative array, dictionary, map, symbol table, etc.

As we saw in a previous chapter, an association list is a simple list-based
implementation of this concept. It is a list of pairs in which the first component
is the key (e.g., a string) and the second component is the value associated with
the key.

The Prelude function lookup, shown below, searches an association list for a key
and returns a Maybe value. If it finds the key, it wraps the associated value in a
Just; if it does not find the key, it returns a Nothing.

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _ [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

For better performance with larger dictionaries, we can replace an association
list by a more efficient data structure such as a Data.Map.Map. This structure
implements the dictionary structure as a size-balanced tree. It provides a lookup
function with essentially the same interface.

Of course, imperative languages might use a mutable hash table to implement a
dictionary.

15

https://en.wikipedia.org/wiki/Associative_array

10.5 Semantics

Consider the evaluation of the Expression Language’s abstract syntax trees as
defined above.

10.5.1 Environments

To evaluate an expression, we must determine the current value of each variable
occurring in the expression. That is, we must evaluate the expression in some
environment that associates the variable names with their values.

For example, consider the expression x + 3. It might be evaluated in an
environment that associates the value 5 with the variable x, written { x -> 5
}. The evaluation of this expression yields the value 8.

The environment { x -> 5 } can be expressed in a number of ways in Haskell.
Here we choose to represent it as a simple association list as follows:

[("x",5)]

This list associates a variable name in the first component with its integer value
in the second component.

Looking up a key in an association list is an O(n) operation where n denotes the
number of key-value pairs.

A good alternative to the association list is a Map from the Data.Map library. It
implements the dictionary as a size-balanced tree, thus its lookup function is an
O(log n) operation.

In the Expression Language implementation, we encapsulate the representation
of the environment in the Environments module. This module exports the
following type synonym and functions:

type AnEnv a = [(Name,a)]

newEnv :: AnEnv a
toList :: AnEnv a -> [(Name,a)]
getBinding :: Name -> AnEnv a -> Maybe a
hasBinding :: Name -> AnEnv a -> Bool
newBinding :: Name -> a -> AnEnv a -> AnEnv a
setBinding :: Name -> a -> AnEnv a -> AnEnv a
bindList :: [(Name,a)] -> AnEnv a -> AnEnv a

For the purposes of our evaluation program, we can then define a specific
environment with the type synonym Env in the EvalExpr module:

import Values (ValType, Name, defaultVal)
import AbSynExpr (Expr(..))
import Environments (AnEnv, Name, newEnv, toList, getBinding,

16

Environments.hs

hasBinding, newBinding, setBinding, bindList)

type Env = AnEnv ValType

10.5.2 Values of AST nodes

We express the semantics (i.e., meaning) of the various Expression Language
expressions (i.e., nodes of the AST) as follows.

• Val c evaluates to the constant (NumType) value c.

• Var n evaluates to the value of variable n in the environment, generating
an error if the variable is not defined.

• Add l r evaluates to the sum of the values of the expression trees l and r.

• Sub l r evaluates to the difference between the values of the expression
trees l and r.

• Mul l r evaluates to the product of the values of the expression trees l
and r.

• Div l r evaluates to the quotient of the values of the expression trees l
and r.

10.5.3 Evaluation function

We can thus define a Haskell evaluation function (i.e., interpreter) for the
Expression Language as follows.

This function in the EvalExpr module does a post-order traversal of the ab-
stract syntax tree, first computing the values of the child subexpressions and
then computing the value of of a node. The value is returned wrapped in an
Either, where the Left constructor represents and error message and the Right
constructor a good value.

import Values (ValType, Name, defaultVal)
import AbSynExpr (Expr(..))
import Environments (AnEnv, Name, newEnv, toList, getBinding,

hasBinding, newBinding, setBinding, bindList)
type EvalErr = String
type Env = AnEnv ValType

eval :: Expr -> Env -> Either EvalErr ValType
eval (Val v) _ = Right v
eval (Var n) env =

case getBinding n env of
Nothing -> Left ("Undefined variable " ++ n)

17

EvalExpr.hs

Just i -> Right i
eval (Add l r) env =

case (eval l env, eval r env) of
(Right lv, Right rv) -> Right (lv + rv)
(Left le, Left re) -> Left (le ++ "\n" ++ re)
(x@(Left le), _) -> x
(_, y@(Left le)) -> y

eval (Sub l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv - rv)
(Left le, Left re) -> Left (le ++ "\n" ++ re)
(x@(Left le), _) -> x
(_, y@(Left le)) -> y

eval (Mul l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv * rv)
(Left le, Left re) -> Left (le ++ "\n" ++ re)
(x@(Left le), _) -> x
(_, y@(Left le)) -> y

eval (Div l r) env =
case (eval l env, eval r env) of

(Right _, Right 0) -> Left "Division by 0"
(Right lv, Right rv) -> Right (lv `div` rv)
(Left le, Left re) -> Left (le ++ "\n" ++ re)
(x@(Left le), _) -> x
(_, y@(Left le)) -> y

Consider an example with a simple main function below (that could be added to
the EvalExpr module) that evaluates the example expressions from a previous
section. (See the extended EvalExpr module.)

main =
do

let env = [("x",5), ("y",7),("z",1)]
let exp1 = Val 3 -- 3
let exp2 = Var "x" -- x
let exp3 = Add (Val 1) (Val 2) -- 1+2
let exp4 = Add (Var "x") (Val 3) -- x + 3
let exp5 = Mul (Add (Var "x") (Var "y"))

(Add (Val 2) (Var "z")) -- (x + y) * (2 + z)
putStrLn ("Expression: " ++ show exp1)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp1 env))
putStrLn ("Expression: " ++ show exp2)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp2 env))
putStrLn ("Expression: " ++ show exp3)

18

EvalExprExt.hs

putStrLn ("Evaluation with x=5, y=7, z=1: "
++ show (eval exp3 env))

putStrLn ("Expression: " ++ show exp4)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp4 env))
putStrLn ("Expression: " ++ show exp5)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp5 env))

It first computes its value in the environment { x -> 5, y -> 7 } and then
computes its derivative relative to x and then to y.

Expression: 3
Evaluation with x=5, y=7, z=1: Right 3
Expression: x
Evaluation with x=5, y=7, z=1: Right 5
Expression: (+ 1 2)
Evaluation with x=5, y=7, z=1: Right 3
Expression: (+ x 3)
Evaluation with x=5, y=7, z=1: Right 8
Expression: (* (+ x y) (+ 2 z))
Evaluation with x=5, y=7, z=1: Right 36

10.6 Read-Evaluate-Print Loop (REPL)

TODO: Write this section

• Read expression from command line

• Evaluate expression after parsing

• Print resulting value

• Loop back for next expression

10.7 Simplification

An expression may be more complex than necessary. We can simplify it, especially
with the intention “optimizing” its evaluation.

An operation whose operands are constants can be simplified by replacing it by
the appropriate constant. For example, Add (Val 3) (Val 4) is the same as
Val 7.

Similarly, we can take advantages of an operation’s identity element and other
mathematical properties to simplify expressions. For example, Add (Val 0)
(Var "x") is the same as Var "x".

19

We can thus define a skeletal function simplify as follows. As with eval, the
simplify function traverses the abstract syntax tree using a post-order traversal.

simplify :: Expr -> Expr
simplify (Add l r) =

case (simplify l, simplify r) of
(Val 0, rr) -> rr
(ll, Val 0) -> ll
(Val x, Val y) -> Val (x+y)
(ll, rr) -> Add ll rr

simplify (Mul l r) =
case (simplify l, simplify r) of

(Val 0, rr) -> Val 0
(ll, Val 0) -> Val 0
(Val 1, rr) -> rr
(ll, Val 1) -> ll
(Val x, Val y) -> Val (x*y)
(ll, rr) -> Mul ll rr

simplify t@(Var _) = t
simplify t@(Val _) = t

In an exercise, you are asked to complete the development of this function.

See the incomplete Process AST module ProcessAST for the sample code in this
subsection and the following one.

10.8 Symbolic Differentiation

Suppose that we redefine the Expr type to support double precision floating
point (i.e., Double) values.

Then let’s consider symbolic differentiation of the arithmetic expressions. Think-
ing back to our study of differential calculus, we identify the following rules for
differentiation:

• The derivative of a sum is the sum of the derivatives.

• The derivative of a product of two operands is the sum of the product of
(a) the first operand and the derivative of the second and (b) the second
operand and the derivative of the first.

• The derivative of some variable v is 1 if differentiation is relative to v and
is 0 otherwise.

• The derivative of a constant is 0.

We can directly translate these rules into a skeletal Haskell function that uses
the above data types, as follows:

20

ProcessAST.hs

deriv :: Expr -> Name -> Expr
deriv (Add l r) v = Add (deriv l v) (deriv r v)
deriv (Mul l r) v = Add (Mul l (deriv r v)) (Mul r (deriv l v))
deriv (Var n) v

| v == n = Val 1
deriv _ _ = Val 0

10.9 Source Code and Module Dependencies

An Expression Language interpreter consists of 7 modules with the module
dependencies shown in Figure 6.

Figure 6: Expression Language module dependencies

The Haskell source code for the Expression Language modules discussed in this
chapter are linked below:

• Evaluator module EvalExpr
• Abstract_Synax module AbSynExpr
• Environments module Environments
• Values module Values

In addition, the code for the partially implemented Process AST module includes
the skeleton simplify and deriv code:

• Incomplete Process AST module ProcessAST (simplify and deriv)

This module is “wrapper” for the EvalExpr module currently.

The source code for the remaining Expression Language modules are discussed
in the next chapter. These are linked below:

• Lexical_analyzer module LexExpr common to both prefix and infix parsers

21

EvalExpr.hs
AbSynExpr.hs
Environments.hs
Values.hs
ProcessAST.hs
LexExpr.hs

• Prefix syntax

– Recursive descent Parser module for prefix language ParsePrefixExpr

– REPL module for prefix syntax PrefixExprREPL

• Infix syntax

– Recursive descent Parser module for infix language ParseInfixExpr

– REPL module for infix syntax InfixExprREPL

The main entry points for use of the interpreters are the REPLs.

10.10 Exercises

1. Extend the abstract syntax tree data type Expr (in the Abstract Syntax
module) to add new operations Neg (negation), Min (minimum), Max
(maximum), and Exp (exponentiation).

data Expr = ...
| Neg Expr
| Min Expr Expr
| Max Expr Expr
| Exp Expr Expr
...

deriving Show

Then extend the eval function (in the EvalExpr module) to add these
new operations with the following informal semantics:

• Neg e negates the value of e – Neg (Val 1) is (Val (-1))

• Min l r returns the smaller value of l and r

• Max l r returns the larger value of l and r

• Exp l r raises l to the poewr r

2. Extend the simplify function to support Sub, Div, and the new operations
given in the previous exercise.

This function should simplify the abstract syntax tree by evaluating subex-
pressions involving only constants (not evaluating variables) and handling
special values like identity and zero elements.

3. Extend the simplify function from the previous exercise in other ways.
For example, take advantage of mathematical properties such as associa-
tivity ((x + y) + z = x + (y + z)), commutativity (x + 1 = 1 + x),
and idempotence (x min x = x).

22

ParsePrefixExpr.hs
PrefixExprREPL.hs
ParseInfixExpr.hs
InfixExprREPL.hs
AbSynExpr.hs
AbSynExpr.hs

4. Extend the abstract syntax tree data type Expr to include the binary oper-
ators Eq (equality) and Lt (less-than comparison), logical unary operator
Not, and the ternary conditional expression If (if-then-else).

data Expr = ...
| Eq Expr Expr
| Lt Expr Expr
| Not Expr
| If Expr Expr Expr
...

deriving Show

Then extend the eval function to implement these new operations.

This extended language does not have Boolean values. We represent “false”
by integer 0 and “true” by a nonzero integer, canonically by

1.

We can express the informal semantics of the new Expression Language
expressions as follows:

• Eq l r evaluates to the value 1 if l and r have the same value and
to 0 otherwise.

• Lt l r evaluates to the value 1 if the value of l is smaller than the
value of r and to 0 otherwise.

• Not i evaluates to 1 if i is zero and evaluates to 0 if i is nonzero.

• If c l r first evaluates c; if c is nonzero, the if evaluates to the
value of l; otherwise the if evaluates to the value of r.

Note: The constants falseVal and trueVal and the functions boolToVal
and valToBool in the Values module may be helpful. (The intention of the
Values module is to keep the representation of the values hidden from the
rest of the interpreter. In particular, these constants and functions these
are to help encapsulate the representation of booleans as the underlying
values.)

5. Develop an object-oriented program (e.g., in Java) to carry out the same
functionality as the Expr data type and eval function described in this
chapter. That is, define a class hierarchy that corresponds to the Expr data
type and use the message-passing style to implement the needed classes
and instances.

6. Extend the object-oriented program from the previous exercise to imple-
ment the Neg, Min, Max, and Exp as described in an earlier exercise.

7. Extend the object-oriented program from the previous exercise to imple-
ment the Eq, Lt, Not, and If as described in another earlier exercise.

8. Extend the object-oriented program above to implement simplification.

23

9. For this exercise, redefine the Expr data type above to hold Double con-
stants instead of Int. In addition to Add, Mul, Sub, Div, Neg, Min, Max, and
Exp, extend the data type and eval function to include the trigonometric
operators Sin and Cos for sine and cosine.

10. Using the extended Double-version of Expr from the previous exercise,
extend function deriv to support all the operators in the data type.

10.11 Acknowledgements

I initially developed this case study for the Haskell-based offering of CSci 556
(Multiparadigm Programming) in Spring 2017. I continued work on it during
Summer and Fall 2017. I based this work, in part, on ideas from:

• the Scala-based Expression Tree Calculator case study from my Notes on
Scala for Java Programmers (which was itself adapted from the tutorial
Scala for Java Programmers in Spring 2016)

• the Lua-based Expression Language 1 and Imperative Core interpreters I
developed for the Fall 2016 CSci 450 course

• Samuel N. Kamin’s textbook Programming Languages: An Interpreter-
based Approach, Addison Wesley, 1990 and my work to implement three
(Core, Lisp, and Scheme) of these interpeters in Lua in 2013

• Sections 1.2, 3.3, and 5.1 of Peter Linz’s textbook An Introduction to
Formal Languages and Automata, Fifth Edition, Jones and Bartlett, 2017

• Section 1.3 of Peter Sestoff’s Programming Language Concepts, Springer,
2012.

• the Wikipedia articles on Regular Grammar, Context-Free Grammar,
Backus-Naur Form, and Abstract Syntax

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed, The HTML version of this document
may require use of a browser that supports the display of MathML.

10.12 References

[Kamin 1990] Samuel N. Kamin. Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, 1990.

[Linz 2017] Peter Linz. An Introduction to Formal Languages and Automata,
Fifth Edition, Jones and Bartlett, 2017. (Especially sections 1.2, 3.3, and
5.1)

[Schinz-Haller 2017] Michel Schinz and Philipp Haller. A Scala Tutorial for
Java Programmers, accessed February 2016.

24

../ScalaForJava.html
../ScalaForJava.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

[Sestoft 2012] Peter Sestoft. Programming Language Concepts, Springer, 2012.
[Wikipedia 2017] Wikipedia articles “Regular Grammar”, “Context-Free

Grammar”, “Backus-Naur Form”, “Lexical Analysis”, “Parsing”, “LL
Parser”, “Recursive Descent Parser”, and “Abstract Syntax”.

10.13 Terms and Concepts

TODO

25

	Chapter Introduction
	Concrete Syntax
	Grammars
	Context-free grammars and BNF
	Derivations
	Regular grammars

	Infix syntax
	Prefix syntax

	Abstract Syntax
	Abstract syntax tree data type
	Values and variable names

	Associative Data Structures
	Semantics
	Environments
	Values of AST nodes
	Evaluation function

	Read-Evaluate-Print Loop (REPL)
	Simplification
	Symbolic Differentiation
	Source Code and Module Dependencies
	Exercises
	Acknowledgements
	References
	Terms and Concepts

