Exam DSL Project

H. Conrad Cunningham

7 November 2018 (after class)

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi

211 Weir Hall

P.O. Box 1848

University, MS 38677

(662) 915-5358

Browser Advisory: The HTML version of this document requires use of a
browser that supports the display of MathML. A good choice as of November
2018 is a recent version of Firefox from Mozilla.

Exam DSL Project

Introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs). For more discussion of DSL concepts and terminology, see the accompa-
nying notes on Domain-Specific Languages.

In this project, we design and implement a simple internal DSL. This DSL
describes simple “programs” using a set of Haskell algebraic data types. We
express a program as an abstract syntaz tree (AST) using the DSL’s data types.

The package first builds a set of functions for creating and manipulating the
abstract syntax trees for the exams. It then extends the package to translate
the abstract syntax trees to HTML.

Note: A similar project is the SandwichDSL case study.

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu
../notes/DomainSpecificLanguages.html
../notes/SandwichDSL/Haskell/SandwichDSL.html

Building Exam DSL

Suppose Professor Harold Pedantic decides to create a DSL to encode his
(allegedly vicious) multiple choice examinations. Since his course uses Haskell to
teach programming language organization, he wishes to implement the language
processor in Haskell. Professor Pedantic is too busy to do the task himself. He
is also cheap, so he assigns us, the students in his class, the task of developing a
prototype.

In the initial prototype, we do not concern ourselves with the concrete syntax of
the Exam DSI. We focus on design of the AST as a Haskell algebraic data type.
We seek to design a few useful functions to manipulate the AST and output an
exam as HTML.

First, let’s focus on multiple-choice questions. For this prototype, we can assume
a question has the following components:

o the text of the question

e a group of several choices for the answer to the question, exactly one of
which should be be a correct answer to the question

e a group of tags identifying topics covered by the question

We can state a question using the Haskell data type Question, which has a
single constructor Ask. It has three components—a list of applicable topic tags,
the text of the question, and a list of possible answers to the question.

type QText = String
type Tag = String
data Question = Ask [Tag] QText [Choice] deriving Show

We use the type QText to describe the text of a question. We also use the type
Tag to describe the topic tags we can associate with a question.

We can then state a possible answer to the question using the data type Choice,
which has a single constructor Answer. It has two components—the text of the
answer and a Boolean value that indicates whether this is a correct answer to
the question (i.e. True) or not.

type AText = String
data Choice = Answer AText Bool deriving (Eq, Show)

As above, we use the type AText to describe the text of an answer.

For example, we could encode the question “Which of the following is a required
course?” as follows.

Ask ["curriculum"]
"Which of the following is a required course?"
[Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False]

The example has a single topic tag "curriculum" and three possible answers,
the second of which is correct.

We can develop various useful functions on these data types. Most of these are
left as exercises.

For example, we can define a function correctChoice that takes a Choice and
determines whether it is marked as a correct answer or not.

correctChoice :: Choice -> Bool

We can also define function lenQuestion that takes a question and returns the
number of possible answers are given. This function has the following signature.

lenQuestion :: Question -> Int

We can then define a function to check whether a question is valid. That is, the
question must have:

e a non-nil text
e at least 2 and no more than 10 possible answers
e exactly one correct answer
It has the type signature.
validQuestion :: Question -> Bool

We can also define a function to determine whether or not a question has a
particular topic tag.

hasTag :: Question -> Tag -> Bool

To work with our lists of answers (and other lists in our program), let’s define
function eqBag with the following signature.

eqBag :: Eq a => [a] -> [a] -> Bool

This is a “bag equality” function for two polymorphic lists. That is, the lists are
collections of elements that can be compared for equality and inequality, but not
necessarily using ordered comparisons. There may be elements repeated in the
list.

Now, what does it mean for two questions to be equal?

For our prototype, we require that the two questions have the same question
text, the same collection of tags, and the same collection of possible answers
with the same answer marked correct. However, we do not require that the tags
or possible answers appear in the same order.

We note that type Choice has a derived instance of class Eq. Thus we can give
an instance definition to make Question an instance of class Eq.

instance Eq Question where
-— fill in the detatls

Now, let’s consider the examination as a whole. It consists of a title and a list of
questions. We thus define the data type Exam as follows.

type Title = String
data Exam = Quiz Title [Question] deriving Show

We can encode an exam with two questions as follows.

Quiz "Curriculum Test" [
Ask ["curriculum"]
"Which one of the following is a required course?"
[Answer "CSci 323" False,
Answer "CSci 450" True,
Answer "CSci 525" False],
Ask ["language","course"]
"What one of the following languages is used in CSci 4507"
[Answer "Lua" False,
Answer "Elm" False,
Answer "Haskell" True]

]

We can define function selectByTags selects questions from an exam based on
the occurrence of the specified topic tags.

selectByTags :: [Tag] -> Exam -> Exam

The function application selectByTags tags exam takes a list of zero or more
tags and an exam and returns an exam with only those questions in which at
least one of the given tags occur in a Question’s tag list.

We can define function validExam that takes an exam and determines whether
or not it is valid. It is valid if and only if all questions are valid. The function
has the following signature.

validExam :: Exam -> Bool

To assist in grading an exam, we can also define a function makeKey that takes
an exam and creates a list of (number,letter) pairs for all its questions. In a
pair, number is the problem number, a value that starts with 1 and increases for
each problem in order. Similarly, letter is the answer identifier, an uppercase
alphabetic character that starts with A and increases for each choice in order.
The function returns the tuples arranged by increasing problem number.

The function has the following signature.
makeKey :: Exam -> [(Int,Char)]

For the example exam above, makeKey should return [(1,'B'),(2,'C')].

Exercise Set A

Define the following functions in a module named ExamDSL (in a file named

ExamDSL.hs).

1. Develop function correctChoice :: Choice -> Bool as defined above.

2. Develop function lenQuestion :: Question -> Int as defined above.

3. Develop function validQuestion :: Question -> Bool as defined
above.

4. Develop function hasTag :: Question -> Tag -> Bool as defined
above.

5. Develop function eqBag :: Eq a => [a] -> [a] -> Bool as defined
above.

6. Give an instance declaration to make data type Question an instance of
class Eq.

7. Develop function selectByTags :: [Tag] -> Exam -> Exam as defined
above.

8. Develop function validExam :: Exam -> Bool as defined above.

9. Develop function makeKey :: Exam -> [(Int,Char)] as defined above.

Outputting the Exam as HTML

Professor Pedantic wants to take an examination expressed with the Exam DSL,
as described above, and output it as HTML.

Again, consider the following Exam value.

Quiz "Curriculum Test" [

Ask ["curriculum"]
"Which one of the following courses is required?"
[Answer "CSci 323" False,
Answer "CSci 450" True,
Answer "CSci 525" False],
Ask ["language","course"]
"What one of the following is used in CSci 4507"
[Answer "Lua" False,
Answer "EIm" False,
Answer "Haskell" True]

]

We want to convert the above to the following HTML.

<html lang="en">

<body>

<h1>Curriculum Test</h1>
<ol type="1">

<1i>Which one of the following courses is required?
<ol type="A">

<1i>CSci 323</1i>
<1i>CSci 450</1i>
<1i>CSci 525</1i>

</1li>

What one of the following is used in CSci 4507
<ol type="A">
<1li>Lua</1i>
<1i>Elm</1i>
Haskell</1i>

</o0l>

</1i>

</body>

</html>

This would render in a browser something like the following.
Curriculum Test

1. Which one of the following courses is required?
A. CSci 323
B. CSci 450
C. CSci 525

2. What one of the following is used in CSci 4507
A. Lua
B. Elm
C. Haskell

Professor Pedantic developed a module of HTML template functions named
SimpleHTML to assist us in this process. (See file SimpleHTML.hs.)

A function application to_html lang content wraps the content (HTML in
a string) inside a pair of HTML tags <html> and </html> with lang attribute
set to langtype, defaulting to English (i.e. "en"). This function and the data
types are defined in the following.

type HTML = String
data LangType = English | Spanish | Portuguese | French
deriving (Eq, Show)
langmap = [(English,"en"), (Spanish,"es"), (Portuguese,'pt"),
(French, "fr")]

SimpleHTML.hs

to_html :: LangType -> HTML -> HTML
to_html langtype content =
"<html lang=\"" ++ lang ++ "\">" ++ content ++ "</html>"
where lang = case lookup langtype langmap of
Just 1 > 1
Nothing -> "en"

For the above example, the to_html function generates the the outer layer:
<html lang="en"> ... </html>

Function application to_body content wraps the content inside a pair of
HTML tags <body> and </body>.

to_body :: HTML -> HTML
to_body content = "<body>" ++ content ++ "</body>"

Function application to_heading level title wraps string title inside a pair
of HTML tags <hN> and </hN> where N is in the range 1 to 6. If 1evel is outside
this range, it defaults to the nearest valid value.

to_heading:: Int -> String -> HTML
to_heading level title = open ++ title ++ close

where lev = show (min (max level 1) 6)
open = |l<h|| ++ lev ++ ||>l|
close = "</h" ++ lev ++ ">"

Function application to_list listtype content wraps the content inside a
pair of HTML tags and or and </o0l>. For tags, it sets
the type attribute based on the value of the 1listtype argument.

data ListType = Decimal | UpRoman | LowRoman
| UpLettered | LowLettered | Bulleted
deriving (Eq, Show)

to_list :: ListType -> HTML -> HTML
to_list listtype content = open ++ content ++ close
where
(open,close) =
case listtype of

Decimal => ("<ol type=\"1\">", "</0l>")
UpRoman -> ("<ol type=\"I\">", "")
LowRoman => ("<ol type=\"i\">", "")

UpLettered -> ("<ol type=\"A\">", "")
LowLettered -> ("<ol type=\"a\">", "")
Bulleted => ("", "")

Finally, function application to_li content wraps the content inside a pair of
HTML tags <1i> and </1i>.

to_1i :: HTML -> HTML
to_li content = "<1i>" ++ content ++ "</1i>"

By importing the SimpleHTML module, we can now develop functions to output
an Exam as HTML.

If we start at the leaves of the Exam AST (i.e. from the Choice data type), we
can define a function choice2html function as follows in terms of to_1i.

choice2html :: Choice -> HTML
choice2html (Answer text _) = to_li text

Using choice2html and the SimpleHTML module, we can define question2html
with the following signature.

question2html :: Question -> HTML

Then using question2html and the SimpleHTML module, we can define
question2html with the following signature.

exam2html :: Exam -> HTML

Note: These two functions should add newline characters to the HTML output
so that they look like the examples at the beginning of the “Outputting” section.
Similarly, it should not output extra spaces. This both makes the string output
more readable and makes it possible to grade the assignment using automated
testing.

For example, the output of question2html for the first Question in the example
above should appear as the following when printed with the putStr input-output
command.

<1i>Which one of the following courses is required?
<ol type="A">

<1i>CSci 323</1i>

<1i>CSci 450</1i>

<1i>CS8ci 525</1i>

In addition, you may want to output the result of exam2html to a file to see how
it displays in a browser a particular exam.

writeFile "output.html" $ exam2html exam

Exercise Set B

Add the following functions to the module ExamDSL developed in Exercise Set A.

1. Develop function question2html :: Question -> HTML as defined
above.

2. Develop function exam2html :: Exam -> HTML as defined above.

Source Code

e ExamDSL_base.hs is the skeleton to flesh out for a solution to this project.

e SimpleHTML.hs is the module of HTML string templates.

Acknowledgements

I developed this project description in Fall 2018 motivated by the Sandwich DSL
project and a set of questions I gave on an exam in the past.

I maintain this document as text in Pandoc’s dialect of Markdown using em-
bedded LaTeX markup for the mathematical formulas and then translate the
notes to HTML, PDF, and other forms as needed. The HTML version of this
document may require use of a browser that supports the display of MathML.

References

TODO

Concepts

TODO

ExamDSL_base.hs
SimpleHTML.hs

	Exam DSL Project
	Introduction
	Building Exam DSL
	Exercise Set A
	Outputting the Exam as HTML
	Exercise Set B
	Source Code
	Acknowledgements
	References
	Concepts

