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Carrie’s Candy Bowl Project

I wrote this assignment description for CSci 450/503 Assignment #3 in Fall
2018.

Problem Description and Initial Design

Carrie, the Department’s Administrative Assistant, has a candy bowl on her
desk. Often she fills this bowl with candy, but the contents are quickly consumed
by students, professors, and staff members. In this project, we model the candy
bowl.

At a particular point in time, the candy bowl may contain several different kinds
of candy with zero or more pieces of each kind.

We can represent a candy bowl with the following user-defined Haskell algebraic
data type CandyBowl:

data CandyBowl a = Bowl [a] deriving Show
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In this definition, type parameter a denotes the type of the identifiers for the
kinds of candy. For example, if we use strings for the kinds of candy, particular
values might be "Snickers", "Kiss", and "wintergreen mints".

In this representation, if the bowl contains two "Snickers" and nothing else,
then the bowl would be represented by the following value:

Bowl ["Snickers","Snickers"]

We say that the bowl above contains no "Kiss" pieces.

Note: There are several possible representations for the candy bowl. We could
use an association list (i.e. a list of pairs mapping kinds to counts) or an
implementation of Data.Map to represent the candy bowl.

Exercises

Develop a Haskell module with the following functions using the type CandyBowl
as defined above. You may use function you have completed to implement other
functions in the list (as long as you do not introduce circular definitions).

Notes

• In some cases, you may need to restrict the polymorphism on CandyBowl a
to implement a function. But be careful not to restrict functions unneces-
sarily.

• You may find Prelude functions such as concatMap, elem, filter, length,
map, null, replicate, and span useful.

• You may also find functions in the Data.List library useful (e.g. sort,
group, (\\)).

Functions

1. newBowl :: CandyBowl a
creates a new empty candy bowl.

2. isEmpty :: CandyBowl a -> Bool
returns True if and only if the bowl is empty.

3. putIn :: CandyBowl a -> a -> CandyBowl a
adds one piece of candy of the given kind to the bowl.

For example, if we use strings to represent the kinds, then

putIn bowl "Kiss"

adds one piece of candy of kind "Kiss" to the bowl.
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4. has :: CandyBowl a -> a -> Bool
returns True if and only if one or more pieces of the given kind of candy is
in the bowl.

5. size :: CandyBowl a -> Int
returns the total number of pieces of candy in the bowl (regardless of kind).

6. howMany :: CandyBowl a -> a -> Int
returns the count of the given kind of candy in the bowl.

7. takeOut :: CandyBowl a -> a -> Maybe (CandyBowl a)
attempts to remove one piece of candy of the given kind from the bowl
(so it can be eaten). If the bowl contains a piece of the given kind, the
function returns the value Just bowl, where bowl is the bowl with the
piece removed. If the bowl does not contain such a piece, it returns the
value Nothing

8. eqBowl :: CandyBowl a -> CandyBowl a -> Bool
returns True if and only if the two bowls have the same contents (that is
the same kinds of candy and the same number of pieces of each kind).

9. inventory :: CandyBowl a -> [(a,Int)]
returns a Haskell list of pairs (k,n), where each kind k of candy in the
bowl occurs once in the list with n > 0. The list should be arranged in
ascending order by kind.

For example, if there are two "Snickers" and one "Kiss" in the bowl, the
list returned would be [("Kiss",1),("Snickers",2)].

10. restock :: [(a,Int)] -> CandyBowl a
creates a new bowl such that for any bowl:

eqBowl (restock (inventory bowl)) bowl == True

11. combine :: CandyBowl a -> CandyBowl a -> CandyBowl a
pours the two bowls together to form a new “larger” bowl.

12. difference :: CandyBowl a -> CandyBowl a -> CandyBowl a
returns a bowl containing the pieces of candy in the first bowl that are not
in the second bowl.

For example, if the first bowl has four "Snickers" and the second has one
"Snickers", then the result will have three "Snickers".

13. rename :: CandyBowl a -> (a -> b) -> CandyBowl b
takes a bowl and a renaming function, applies the renaming function to all
the kind values in the bowl, and returns the modified bowl.

For example, for some mysterious reason, we might want to reverse the
strings for the kind names: f xs = reverse xs. Thus "Kiss" would
become "ssiK". Then rename f bowl would do the reversing of all the
names.
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