
Exploring Languages with Interpreters
and Functional Programming

Chapter 43

H. Conrad Cunningham

24 November 2018

Contents
43 Calculator: Modular Structure 2

43.1 Chapter Introduction . 2
43.2 Module Dependencies . 2
43.3 Values Module . 2
43.4 Environments Module . 3
43.5 Abstract Syntax Module . 4
43.6 Evaluator Module . 5
43.7 Lexical Analysis Module . 5
43.8 Parser Modules . 6
43.9 REPL Modules . 7
43.10Code Improvement Modules . 7
43.11What Next? . 7
43.12Exercises . 8
43.13Acknowledgements . 8
43.14References . 9
43.15Terms and Concepts . 9

Copyright (C) 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of November 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

43 Calculator: Modular Structure

43.1 Chapter Introduction

TODO: Write missing pieces and flesh out other sections

43.2 Module Dependencies

An ELI Calculator interpreter consists of seven modules with the module depen-
dencies shown in Figure 43-1.

Figure 43-1: ELI Calculator language module dependencies

We examine each module in the following sections.

43.3 Values Module

The Values module Values is introduced in Chapter 42. It encapsulates the defi-
nitions and functions that know the specific representation of an ELI language’s
data. Other modules should use its public features to enable the representation
to be changed easily.

The secret of the Values module is the specific representation for the values
supported by the language.

This module currently supports both the ELI Calculator language and the ELI
Imperative Core language we examine in a later chapter. For both languages,
the only type of values supported are integers. Booleans are encoded as integers.

The Values module’s abstract interface includes the following public features

2

Values.hs

• Type ValType is the type of the values in the ELI language.

• Constant defaultVal is the default value for ELI language variables when
no value is specified.

Note: A constant is an argumentless function.

• Constants falseVal and trueVal are the ELI language’s canonical repre-
sentations for false and true as ValType values, respectively.

• Function boolToVal converts Haskell Bool values False and True to
falseVal and trueVal, respectively.

• Function valToBool v converts ELI language value v to Haskell False
and True appropriately.

falseVal is mapped to Haskell False. Any other value is mapped to
Haskell True; we call these truthy values.

The interface also includes the following, which are intended for the exclusive
use of the lexical analysis module to support finite range integers.

• Type NumType is the actual type used to represent integers.

• Function toNumType takes a string of digits numstr and returns an Either
String NumType where Left wraps an error message and Right wraps
numstr interpreted as a NumType value.

43.4 Environments Module

An environment is a mapping between a name and its value.

The Environments module Environments is introduced in Chapter 42. It encap-
sulates the definitions and functions that know the specific representation of an
environment for an ELI language. Other modules should use its public features
to enable the representation to be changed easily.

The secret of the Environments module is the specific representation for the
environments used in interpreter for the ELI language.

This module currently supports both the ELI Calculator and the ELI Imperative
Core languages (in a future chapter).

• The ELI Calculator language uses a single global environment consisting
of a set of (Name,ValType) pairs.

• The ELI Imperative Core language (which supports function definitions
and function calls) uses three different environments, all of which are
implemented with the Environments module:

– a global variable environment consisting of a set of (Name,ValType)
pairs (as above)

3

Environments.hs

– a global function definition environment consisting of a set of ‘Name-
function definition pairs

– a local parameter environment like the global variable environment
except holding the values of the parameters for a function call

The Environments module’s abstract interface includes the following public
features.

• Type AnEnv a is the type of an environment whose values have parameter
type a.

• Type Name is imported from the Values module and reexported.

• Constructor function newEnv returns a new empty environment.

• Mutator function newBinding adds a new name-value binding to an envi-
ronment.

• Mutator function setBinding changes the value of an existing name in an
environment.

• Mutator function bindList takes a list of name-value pairs and adds a
new binding for each to an environment.

• Accessor function toList returns an association list equivalent to the
environment.

• Accessor function getBinding returns the value associated with a given
name.

• Query function hasBinding returns True if and only if the given name is
bound in the environment.

43.5 Abstract Syntax Module

The Abstract_Synax module AbSynCalc module is introduced in Chapter 42. It
centralizes the abstract syntax definition for the ELI Calculator language so it
can be imported where needed.

The abstract syntax consists of algebraic data type definitions. The semantics of
the abstract syntax tree is known by modules that must create (e.g. parser) and
use (e.g. evaluator) the abstract syntax trees.

The module defines and exports the algebraic data type Expr and implements it
as an instance of class Show. Values of type Expr are the abstract syntax trees
for the ELI Calculator language.

The module also exports types ValType and Name that it imports from the the
Values module.

4

AbSynCalc.hs

43.6 Evaluator Module

The Evaluator module EvalCalc encapsulates the definition of the evaluation
function (i.e. the semantics) of the ELI Calculator language.

The secret of the EvalCalc is the implementation of the semantics of the language,
including the specifics of the environment.

The Evaluator module’s abstract interface includes the following public features.

• Evaluation function eval takes an ELI Calculator abstract syntax tree
(i.e. an Expr) and returns its value in the environment.

• Type Env defines the environment (i.e. mapping of variable names to their
values) for the ELI Calculator language.

• Constant lastVal is the variable name whose value in the environment is
the result of the most recent expression evaluation.

• Constructor function newEnviron creates a new environment that is empty
except that variable lastVal is set to Values.defaultVal.

• Query function hasNameBinding returns True if and only if the given name
is defined in the environment.

• Mutator function newNameBinding that creates a new variable in the
environment and gives it a value.

• Mutator function setNameBinding that sets an existing variable in the
environment to a new value.

• Accessor function getNameBinding retrieves the value of a variable from
the environment.

• Accessor function showEnviron displays all the variables and their values
in the environment.

• Type EvalErr represents error messages arising from evaluation.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

43.7 Lexical Analysis Module

The Lexical Analyzer module LexCalc is introduced in Chapter 44. It is common
to both the prefix and infix parsers for the ELI Calculator language.

The secret of this module is the lexical structure of the concrete language syntax.

The Lexical Analyzer module’s abstract interface consists of the following public
features.

5

EvalCalc.hs
LexCalc.hs

• Algebraic data type Token describes the smallest units of the syntax
processed by the parser, such as identifiers, operator symbols, parentheses,
etc.

• Function showTokens is a convenience function that shows a list of tokens
as a string.

• Function lexx takes a string and returns the corresponding list of lexi-
cal tokens, but it does not distinguish among identifiers, keywords, and
operators.

• Function lexer takes a string and returns the corresponding list of lexical
tokens, distinguishing among identifiers, keywords, and operators.

• Type NumType is imported from the Values module and reexported; it is
the actual type used to represent integers.

• Type Name{.haskell is from the Values module and reexported; it is the
type that represents “names” such as identifiers and operator symbols.

43.8 Parser Modules

Chapter 44 introduces two alternative implementations of the Parser abstract
module for the ELI Calculator language. These implementations correspond
to the two different concrete syntaxes given in Chapter 41. Both use the same
Lexical Analyzer.

• Module ParsePrefixCalc parses an ELI Calculator language prefix ex-
pression and generates the equivalent abstract syntax tree.

• Module ParseInfixCalc parses an ELI Calculator language infix expres-
sion and generates the equivalent abstract syntax tree,

The secret of the abstract parser module is how the input syntax is recognized
and translated to the abstract syntax.

The Parser abstract module’s abstract interface consists of the following public
features.

• Function parse takes an input string, parses it according to the corre-
sponding ELI Calculator language concrete syntax and returns an Either
item wrapping the Expr abstract syntax tree (Right) or an error message
(Left).

• Function parseExpression takes a Token list, parses an Expr from the
beginning of the list, and returns a pair consisting of

– an Either wrapping the Expr abstract syntax tree found (Right or
an error message (Right

– the Token list remaining after the Expr.

6

ParsePrefixCalc.hs
ParseInfixCalc.hs

• Type ParErr is the type of the error messages.

• Function trimComment trims an end-of-line comment from a line of text.

• Function getName takes a string and returns a Just wrapping a Name if it
is a valid identifier or a Nothing if any non-identifier characters occur.

• Function getValue extracts an identifier from the beginning of a string
and returns the identifier and the remaining string.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

43.9 REPL Modules

A REPL (Read-Evaluate-Print Loop) is a command line interface with the
following cycle of steps:

1. Read an input from the command line.

If the input is an exit command, exitloop ; else continue.

2. Evaluate the expression after parsing.

3. Print the resulting value.

4. Loop back to step 1.

The secret of the REPL modules is how the user interacts with the interpreter.

The ELI Calculator language interpreter provides two REPL modules:

• PrefixCalcREPL that uses the Calculator language’s prefix syntax

• InfixCalcREPL that uses the Calculator languages’s infix syntax

In addition to accepting ELI Calculator expressions, they accept the REPL
commands :set, :display, and :quit.

43.10 Code Improvement Modules

In addition, the partially implemented Process AST module includes the skeleton
simplify and deriv functions discussed in Chapter 42.

This module is “wrapper” for the EvalCalc module currently.

43.11 What Next?

TODO

7

PrefixCalcREPL.hs
InfixCalcREPL.hs
ProcessAST.hs

43.12 Exercises

TODO

43.13 Acknowledgements

I initially developed the ELI Calculator language (then called the Expression
Language) case study for the Haskell-based offering of CSci 556, Multiparadigm
Programming, in Spring 2017. I based this work, in part, on ideas from:

• the 2016 version of my Scala-based Expression Tree Calculator case study
from my Notes on Scala for Java Programmers [Cunningham 2018] (which
was itself adapted from the the tutorial [Schniz 2018])

• the Lua-based Expression Language 1 and Imperative Core interpreters I
developed for the Fall 2016 CSci 450 course

• Kamin’s textbook [Kamin 1990] and my work to implement three (Core,
Lisp, and Scheme) of these interpeters in Lua in 2013

• sections 1.2, 3.3, and 5.1 of the Linz textbook [Linz 2017]

• section 1.3 and 1.4 of the Sestoft textbook [Sestoft 2012]

• Wikipedia articles [Wikipedia 2018a] on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing

• the Wikipedia articles [Wikipedia 2018b] on Abstract Syntax and Associa-
tive Array.

In 2017, I continued to develop this work as Chapter 10, Expression Language
Syntax and Semantics, of my 2017 Haskell-based programming languages text-
book.

In Summer 2018, I divided the previous Expression Language Syntax and
Semantics chapter into three chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Section 10.2 became chapter 42, Calculator Concrete Syntax, sections 10.3-5 and
10.7-8 became chapter 43, Calculator Abstract Syntax & Evaluation, and sections
10-6 and 10-9 and section 11.5 became Chapter 44, Calculator Architecture (this
chapter).

In Summer 2018, I divided the previous Expression Language Syntax and
Semantics chapter into three chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Section 10.2 became Chapter 41, Calculator Concrete Syntax, sections 10.3-
5 and 10.7-8 became Chapter 42, Calculator Abstract Syntax & Evaluation,
and sections 10-6 and 10-9 and section 11.5 were expanded into Chapter 43,
Calculator Modular Structure (this chapter).

8

https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

43.14 References

[Cunningham 2018]: H. Conrad Cunningham. Notes on Scala for Java Pro-
grammers, 2018 (which is itself adapted from the tutorial [Schinz 2018]
Scala for Java Programmers

[Kamin 1990]: Samuel N. Kamin. Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, 1990.

[Linz 2017]: Peter Linz. An Introduction to Formal Languages and Automata,
Fifth Edition, Jones and Bartlett, 2017.

[Schinz 2018]: Michel Schinz and Philipp Haller. A Scala Tutorial for Java
Programmers, Scala Language Website, accessed February 2018.

[Sestoft 2012]: Peter Sestoft. Programming Language Concepts, Springer,
2012.

[Wikipedia 2018a]: Wikipedia. Articles on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing. Accessed 9 August 2018.

[Wikipedia 2018b]: Wikipedia. Articles on Abstract Syntax and Associative
Array, Accessed 9 August 2018.

43.15 Terms and Concepts

TODO

9

https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html%3E
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html%3E
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array

	Calculator: Modular Structure
	Chapter Introduction
	Module Dependencies
	Values Module
	Environments Module
	Abstract Syntax Module
	Evaluator Module
	Lexical Analysis Module
	Parser Modules
	REPL Modules
	Code Improvement Modules
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

