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42 Calculator: Abstract Syntax & Evaluation

42.1 Chapter Introduction

TODO: Check introduction, what next, acknowledgements, references, and terms
once ELI Calculator chapters are complete.

The previous chapter introduced formal concepts related to concrete syntax and
gave two different concrete syntaxes for the ELI Calculator language.

This chapter introduces the concepts related to abstract syntax and language
semantics. It encodes the essential structure of any ELI Calculator expression
as a Haskell algebraic data type and defines the semantics operationally using a
Haskell evaluation function. The abstract syntax also enables the expression to
be transformed in various ways, such as converting it to a simpler expression
while maintaining an equivalent value.

42.2 Abstract Syntax

The abstract syntax of an expression seeks to represent only the essential aspects
of the expression’s structure, ignoring nonessential, representation-dependent
details of the concrete syntax [Sestoft 2012] [Wikipedia 2018b].

For example, parentheses represent structural details in the concrete syntaxes
given in the previous chapter. This structural information can be represented
directly in the abstract syntax; there is no need for parentheses to appear in the
abstract syntax.

We can represent arithmetic expressions conveniently using a tree data structure,
where the nodes represent operations (e.g. addition) and leaves represent values
(e.g. constants or variables). This representation is called a abstract syntax tree
(AST) for the expression.

42.2.1 Abstract syntax tree data type

In Haskell, we can represent an abstract syntax trees using algebraic data types.
Such types often enable us to express programs concisely by using pattern
matching.

For the ELI Calculator language, we define the Expr algebraic data type—in
the Abstract Syntax module (AbSynCalc)—to describe the abstract syntax tree.

import Values ( ValType, Name )

data Expr = Add Expr Expr
| Sub Expr Expr
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| Mul Expr Expr
| Div Expr Expr
| Var Name
| Val ValType

-- deriving Show?

instance Show Expr where
show (Val v) = show v
show (Var n) = n
show (Add l r) = showParExpr "+" [l,r]
show (Sub l r) = showParExpr "-" [l,r]
show (Mul l r) = showParExpr "+" [l,r]
show (Div l r) = showParExpr "/" [l,r]

showParExpr :: String -> [Expr] -> String
showParExpr op es =

"(" ++ op ++ " " ++ showExprList es ++ ")"

showExprList :: [Expr] -> String
showExprList es = Data.List.intercalate " " (map show es)

Above in type Expr, the constructors Add, Sub, Mul, and Div represent the addi-
tion, subtraction, multiplication, and division, respectively, of the two operand
subexpressions, Var represents a variable with a name, and Val represents a
constant value.

Note that this abstract syntax is similar to the (Lisp-like) parenthesized prefix
syntax described in the previous chapter.

We make type Expr an instance of class Show. We do not derive or define an
instance of the Eq class because direct structural equality of trees may not be
how we want to define equality comparisons.

We can thus express the example expressions from the Concrete Syntax chapter
as follows:

Val 3 -- 3
Val (-3) -- -3
Var "x" -- x
Add (Val 1) (Val 1) -- 1+1
Add (Var "x") (Val 3) -- x + 3

-- (x + y) * (2 - z)
Mul (Add (Var "x") (Var "y")) (Sub (Val 2) (Var "z"))

Figures 42-1 and 42-2 show abstract syntax trees for two example expressions
above.

In a subsequent chapter on parsing, we develop parsers for both the prefix and
infix syntaxes. Both parsers construct abstract syntax trees using the algebraic
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Figure 42-1: Abstract syntax tree for 1 + 1 and (+ 1 1)

data type Expr.

42.2.2 Values and variable names

The ELI Calculator language restricts values to ValType. The Values module
indirectly defines this type synonym to be Int.

The abstract syntax allows a name to be represented by any string (i.e. type
alias Name, which is defined to be String in the Values module). We likely
want to restrict names to follow the usual “identifier” syntax. The parser for
the concrete syntax should enforce this restriction. Or we could define Haskell
functions to parse and construct identifiers, such as the functions below.

import Data.Char ( isAlpha, isAlphaNum )

getId :: String -> (Name,String)
getId [] = ([],[])
getId xs@(x:_)

| isFirstId x = span isRestId xs
| otherwise = ([],xs)

where
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Figure 42-2: Abstract syntax tree for (x + y) * (2 - z) and (* (+ x
y) (- 2 z))
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isFirstId c = isAlpha c || c == '_'
isRestId c = isAlphaNum c || c == '_'

identifier :: String -> Maybe Name
identifier xs =

case getId xs of
(xs@(_:_),[]) -> Just xs
otherwise -> Nothing

The getId function takes a string and parses an identifier at the beginning of the
string. A valid identifier must begin with an alphabetic or underscore character
and continue with zero or more alphabetic, numeric, or underscore characters.

The getId function uses the higher order function span to collect the characters
that form the identifier. This function takes a predicate and returns a pair, of
which the first component is the prefix string satisfying the predicate and the
second is the remaining string.

In the following chapter, we examine how to parse an expression’s concrete
syntax to build an abstract syntax tree.

42.3 Associative Data Structures

In language processing, we often need to associate some key (e.g. a variable name)
with its value. There are several names for this type of data structure—associative
array [Wikipedia 2018b], dictionary, map, symbol table, etc.

As we saw in Chapter 21, an association list is a simple list-based implementation
of this concept. It is a list of pairs in which the first component is the key (e.g. a
string) and the second component is the value associated with the key.

The Prelude function lookup, shown below (and in Chapter 21), searches an
association list for a key and returns a Maybe value. If it finds the key, it wraps
the associated value in a Just; if it does not find the key, it returns a Nothing.

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _ [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

For better performance with larger dictionaries, we can replace an association
list by a more efficient data structure such as a Data.Map.Map. This structure
implements the dictionary structure as a size-balanced tree. It provides a lookup
function with essentially the same interface.

Of course, imperative languages might use a mutable hash table to implement a
dictionary.
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42.4 Semantics

Consider the evaluation of the ELI Calculator language abstract syntax trees as
defined above.

42.4.1 Environments

To evaluate an expression, we must determine the current value of each variable
occurring in the expression. That is, we must evaluate the expression in some
environment that associates the variable names with their values.

For example, consider the expression x + 3. It might be evaluated in an
environment that associates the value 5 with the variable x, written { x -> 5
}. The evaluation of this expression yields the value 8.

The environment { x -> 5 } can be expressed in a number of ways in Haskell.
Here we choose to represent it as a simple association list as follows:

[("x",5)]

This list associates a variable name in the first component with its integer value
in the second component.

Looking up a key in an association list is an O(n) operation where n denotes the
number of key-value pairs.

As noted above, a good alternative to the association list is a Map from the
Data.Map library. It implements the dictionary as an immutable, size-balanced
tree, thus its lookup function is an O(log n) operation.

In the ELI Calculator language implementation, we encapsulate the representa-
tion of the environment in the Environments module. This module exports the
following type synonym and functions:

type AnEnv a =[(Name,a)]

newEnv :: AnEnv a
toList :: AnEnv a -> [(Name,a)]
getBinding :: Name -> AnEnv a -> Maybe a
hasBinding :: Name -> AnEnv a -> Bool
newBinding :: Name -> a -> AnEnv a -> AnEnv a
setBinding :: Name -> a -> AnEnv a -> AnEnv a
bindList :: [(Name,a)] -> AnEnv a -> AnEnv a

For the purposes of our evaluation program, we can then define a specific
environment with the type synonym Env in the Evaluator (EvalCalc) module
as follows:

import Values ( ValType, Name, defaultVal )
import AbSynExpr ( Expr(..) )
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import Environments ( AnEnv, Name, newEnv, toList, getBinding,
hasBinding, newBinding, setBinding,
bindList )

type Env = AnEnv ValType

42.4.2 Values of AST nodes

We express the semantics (i.e. meaning) of the various ELI Calculator language
expressions (i.e. nodes of the AST) as follows.

• c evaluates to the constant (NumType) value c.

• Var n evaluates to the value of variable n in the environment, generating
an error if the variable is not defined.

• Add l r evaluates to the sum of the values of the expression trees l and r.

• Sub l r evaluates to the difference between the values of the expression
trees l and r.

• Mul l r evaluates to the product of the values of the expression trees l
and r.

• Div l r evaluates to the quotient of the values of the expression trees l
and r. Division by zero is not defined.

Operations Add, Sub, Mul, and Div are strict. They are undefined if any of their
subexpressions are undefined.

42.4.3 Evaluation function

We can thus define a Haskell evaluation function (i.e. interpreter) for the ELI
Calculator language as follows.

This function in the Evaluator module (EvalCalc) does a post-order traversal of
the abstract syntax tree, first computing the values of the child subexpressions
and then computing the value of of a node. The value is returned wrapped in an
Either, where the Left constructor represents an error message and the Right
constructor a good value.

import Values ( ValType, Name, defaultVal )
import AbSynExpr ( Expr(..) )
import Environments ( AnEnv, Name, newEnv, toList, getBinding,

hasBinding, newBinding, setBinding,
bindList )

type EvalErr = String
type Env = AnEnv ValType
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eval :: Expr -> Env -> Either EvalErr ValType
eval (Val v) _ = Right v
eval (Var n) env =

case getBinding n env of
Nothing -> Left ("Undefined variable " ++ n)
Just i -> Right i

eval (Add l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv + rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Sub l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv - rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Mul l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv * rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Div l r) env =
case (eval l env, eval r env) of

(Right _, Right 0 ) -> Left "Division by 0"
(Right lv, Right rv) -> Right (lv `div` rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

Consider an example with a simple main function below (that could be added to
the EvalExpr module) that evaluates the example expressions from a previous
section. (See the extended Evaluator module (EvalCalcExt).)

main =
do

let env = [("x",5), ("y",7),("z",1)]
let exp1 = Val 3 -- 3
let exp2 = Var "x" -- x
let exp3 = Add (Val 1) (Val 2) -- 1+2
let exp4 = Add (Var "x") (Val 3) -- x + 3
let exp5 = Mul (Add (Var "x") (Var "y"))

(Add (Val 2) (Var "z")) -- (x + y) * (2 + z)
putStrLn ("Expression: " ++ show exp1)
putStrLn ("Evaluation with x=5, y=7, z=1: "
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++ show (eval exp1 env))
putStrLn ("Expression: " ++ show exp2)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp2 env))
putStrLn ("Expression: " ++ show exp3)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp3 env))
putStrLn ("Expression: " ++ show exp4)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp4 env))
putStrLn ("Expression: " ++ show exp5)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp5 env))

When main is called, it first computes he values of the various expressions in the
environment { x -> 5, y -> 7 } and then prints their results.

Expression: 3
Evaluation with x=5, y=7, z=1: Right 3
Expression: x
Evaluation with x=5, y=7, z=1: Right 5
Expression: (+ 1 2)
Evaluation with x=5, y=7, z=1: Right 3
Expression: (+ x 3)
Evaluation with x=5, y=7, z=1: Right 8
Expression: (* (+ x y) (+ 2 z))
Evaluation with x=5, y=7, z=1: Right 36

42.5 Simplification

An expression may be more complex than necessary. We can simplify it, perhaps
with the intention of optimizing its evaluation.

An operation whose operands are constants can be simplified by replacing it
by the appropriate constant. For example, Add (Val 3) (Val 4) is the same
semantically as Val 7.

Similarly, we can take advantages of an operation’s identity element
and other mathematical properties to simplify expressions. For example,
Add (Val 0) (Var "x") is the same as Var "x".

We can thus define a skeletal function simplify as follows. As with eval, the
simplify function traverses the abstract syntax tree using a post-order traversal.

simplify :: Expr -> Expr
simplify (Add l r) =

case (simplify l, simplify r) of
(Val 0, rr) -> rr
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(ll, Val 0) -> ll
(Val x, Val y) -> Val (x+y)
(ll, rr) -> Add ll rr

simplify (Mul l r) =
case (simplify l, simplify r) of

(Val 0, rr) -> Val 0
(ll, Val 0) -> Val 0
(Val 1, rr) -> rr
(ll, Val 1) -> ll
(Val x, Val y) -> Val (x*y)
(ll, rr) -> Mul ll rr

simplify t@(Var _) = t
simplify t@(Val _) = t

In an exercise, you are asked to complete the development of this function.

See the incomplete Process AST module (ProcessAST) for the sample code in
this section and the next one.

42.6 Symbolic Differentiation

Suppose that we redefine the Expr type to support double precision floating
point (i.e. Double) values.

Then let’s consider symbolic differentiation of the arithmetic expressions. Think-
ing back to our study of differential calculus, we identify the following rules for
differentiation:

• The derivative of a sum is the sum of the derivatives.

• The derivative of a product of two operands is the sum of the product of
(a) the first operand and the derivative of the second and (b) the second
operand and the derivative of the first.

• The derivative of some variable v is 1 if differentiation is relative to v and
is 0 otherwise.

• The derivative of a constant is 0.

We can directly translate these rules into a skeletal Haskell function that uses
the above data types, as follows:

deriv :: Expr -> Name -> Expr
deriv (Add l r) v = Add (deriv l v) (deriv r v)
deriv (Mul l r) v = Add (Mul l (deriv r v)) (Mul r (deriv l v))
deriv (Var n) v

| v == n = Val 1
deriv _ _ = Val 0
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See the incomplete Process AST module (ProcessAST) for the sample code in
this section.

42.7 What Next?

Chapter 41 presented concrete syntax concepts, illustrating them with two
different concrete syntaxes for the ELI Calculator language.

This chapter (42) presented abstract syntax trees as structures for representing
the essential features of the syntax in a form that can be evaluated directly. The
same abstract syntax can encode either of the two concrete syntaxes for the ELI
Calculator language.

Chapter 44 introduces lexical analysis and parsing as techniques for processing
concrete syntax expressions to generate the equivalent abstract syntax trees.

Before we look at parsing, let’s examine the overall modular structure of the
ELI Calculator language interpreter in Chapter 43.

42.8 Exercises

1. Extend the abstract syntax tree data type Expr, which is defined in
the Abstract Syntax module (AbSynCalc), to add new operations Neg
(negation), Min (minimum), Max (maximum), and Exp (exponentiation).

data Expr = ...
| Neg Expr
| Min Expr Expr
| Max Expr Expr
| Exp Expr Expr
...

deriving Show

Then extend the eval function, which is defined in the Evaluator mod-
ule (EvalCalc), to add these new operations with the following informal
semantics:

• Neg e negates the value of expression e. For example, Neg (Val 1)
yields (Val (-1)).

• Min l r yields the smaller value of expression l and expression r.

• Max l r yields the larger value of expression l and r.

• Exp l r raises the value of expression l to a power that is the value
of expression r. It is undefined for a negative exponent value r.

These operations are all strict; they only have values if all their subexpres-
sions also have values.
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2. Extend the simplify function to support operations Sub and Div and the
new operations given in the previous exercise.

This function should simplify the abstract syntax tree by evaluating subex-
pressions involving only constants (not evaluating variables) and handling
special values like identity and zero elements.

3. Extend the simplify function from the previous exercise in other ways.
For example, take advantage of mathematical properties such as associativ-
ity ((x + y) + z = x + (y + z)), commutativity (x + 1 = 1 + x), and
idempotence (x min x = x).

4. Extend the abstract syntax tree data type Expr to include the binary oper-
ators Eq (equality) and Lt (less-than comparison), logical unary operator
Not, and the ternary conditional expression If (if-then-else).

data Expr = ...
| Eq Expr Expr
| Lt Expr Expr
| Not Expr
| If Expr Expr Expr
...

deriving Show

Then extend the eval function to implement these new operations.

This extended language does not have Boolean values. We represent “false”
by integer 0 and “true” by a nonzero integer, canonically by 1.

We can express the informal semantics of the new ELI Calculator language
expressions as follows:

• Eq l r yields the value 1 if expressions l and r have the same value;
it yields the value 0 if l and r have different values.

• Lt l r yields the value 1 if the value of expression l is smaller than
the value of expression r; it yields the value 0 if l is greater than or
equal to r.

• Not i yields 1 if the value of expression i is 0; it yields the value 0 if
i is nonzero.

• If c l r first evaluates expression c. If c has a nonzero value, the
If yields the value of expression l. If c has value 0, the If yields the
value of expression r.

Operations Eq, Lt, and Not are strict for all subexpressions; that is, they
are undefined if any subexpression is undefined.

Operation If is strict in its first subexpression c.

Note: The constants falseVal and trueVal and the functions boolToVal
and valToBool in the Values module may be helpful. (The intention of the
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Values module is to keep the representation of the values hidden from the
rest of the interpreter. In particular, these constants and functions these
are to help encapsulate the representation of booleans as the underlying
values.)

5. Extend the abstract syntax tree data type Expr from the previous exercise
(which defines operator If) to include a Switch expression.

data Expr = ...
| Switch Expr Expr [Expr]
...

deriving Show

Then extend the eval function to implement this new operation.

We can express the informal semantics of this new ELI Calculator language
expression as follows:

• Switch n def exs first evaluates expression n. If the value of n is
greater than or equal to 0 and less than length exs, then the Switch
yields the value of the nth expression in list exs (where the first
element is at index 0). Otherwise, the Switch yields the value of the
default expression def.

6. Develop an object-oriented program (e.g. in Java) to carry out the same
functionality as the Expr data type and eval function described in this
chapter. That is, define a class hierarchy that corresponds to the Expr data
type and use the message-passing style to implement the needed classes
and instances.

7. Extend the object-oriented program from the previous exercise to the Neg,
Min, Max, and Exp as described in an earlier exercise.

8. Extend the object-oriented program from the previous exercise to imple-
ment the Eq, Lt, Not, and If as described in another earlier exercise.

9. Extend the object-oriented program above to implement simplification.

10. For this exercise, redefine the Expr data type above to hold Double con-
stants instead of Int. In addition to Add, Mul, Sub, Div, Neg, Min, Max, and
Exp, extend the data type and eval function to include the trigonometric
operators Sin and Cos for sine and cosine.

11. Using the extended Double version of Expr from the previous exercise,
extend function deriv to support all the operators in the data type.
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Programming, in Spring 2017. I based this work, in part, on ideas from:
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• section 1.3 of the Sestoft textbook [Sestoft 2012]

• Wikipedia articles [Wikipedia 2018a] on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing

• the Wikipedia articles [Wikipedia 2018b] on Abstract Syntax and Associa-
tive Array.

In 2017, I continued to develop this work as Chapter 10, Expression Language
Syntax and Semantics, of my 2017 Haskell-based programming languages text-
book.

In Summer 2018, I divided the previous Expression Language Syntax and
Semantics chapter into three chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Section 10.2 became Chapter 41, Calculator Concrete Syntax, sections 10.3-5
and 10.7-8 became Chapter 42, Calculator Abstract Syntax & Evaluation (this
chapter), and sections 10-6 and 10-9 and section 11.5 were expanded into Chapter
43, Calculator Modular Structure.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.
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