
Exploring Languages with Interpreters
and Functional Programming

Chapter 41

H. Conrad Cunningham

24 November 2018

Contents
41 Calculator: Concrete Syntax 2

41.1 Chapter Introduction . 2
41.2 Concrete Syntax . 2
41.3 Grammars . 3

41.3.1 Context-free grammars and BNF 3
41.3.2 Derivations . 4
41.3.3 Regular grammars . 5

41.4 Infix syntax . 5
41.5 Prefix syntax . 8
41.6 What Next? . 10
41.7 Exercises . 10
41.8 Acknowledgements . 10
41.9 References . 12
41.10Terms and Concepts . 13

Copyright (C) 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of November 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

41 Calculator: Concrete Syntax

41.1 Chapter Introduction

TODO: Check introduction, what next, acknowledgements, references, and terms
once ELI Calculator chapters are complete.

The previous chapter surveyed the overall language processing pipeline.

Chapters 41-46 explore language concepts processing techniques in the context
of a simple case study. The case study uses a language of simple arithmetic
expressions, a language we call the ELI (Exploring Languages with Interpreters)
Calculator language.

• This chapter (41) introduces the formal concepts related to concrete syntax.
It gives two different concrete syntaxes for the ELI Calculator language.

• Chapter 42 introduces the concepts of abstract syntax and language seman-
tics. It represents both concrete syntaxes of the ELI Calculator language
with the same abstract syntax encoded as a Haskell algebraic data type.
It defines the semantics of the language using a Haskell function that
evaluates (i.e. interprets) the abstract syntax expressions.

• Chapter 43 surveys the modular design and implementation of the ELI
Calculator language application.

• Chapter 44 considers lexical analysis and parsing of the concrete syntaxes
to generate the corresponding abstract syntax trees.

• Chapter 45 explores the construction of a set of parsing combinators.

• Chapter 46 looks at a simple Stack Virtual Machine with an instruction set
represented as another algebraic data type and how to translate (i.e. com-
pile), how to execute the machine, and how to translate the abstract syntax
trees to sequences of instructions.

We will extend the language with other features in later chapters.

41.2 Concrete Syntax

The ELI Calculator language can be represented as human-readable text strings
in forms similar to traditional mathematical and programming notations. The
structure of these textual expressions is called the concrete syntax of the expres-
sions.

In this case study, we examine two possible concrete syntaxes: a familiar infix
syntax and a (probably less familiar) parenthesized prefix syntax.

But, first, let’s consider how we can describe the syntax of a language.

2

41.3 Grammars

We usually describe the syntax of a language using a formal grammar [Linz
2017] [Wikipedia 2018a].

Formally, a formal grammar consists of a tuple (V, T, S, P), where:

• V is a finite set of variable (or nonterminal) symbols
• T is a finite set of terminal symbols (called the alphabet)
• S ∈ V is the start (or goal) symbol
• P is a finite set of production rules
• V and T are disjoint

Production rules describe how the grammar transforms one sequence of symbols
to another. The rules have the general form

x → y

where x and y are sequences of symbols from V ∪ T such that x has length of at
least one symbol.

A sentence in a language consists of any finite sequence of terminal symbols that
can be generated from the start symbol of a grammar by a finite sequence of
productions from the grammar.

We call a sequence of productions that generates a sentence a derivation for that
sentence.

Any intermediate sequence of symbols in a derivation is called a sentential form.

The language generated by the grammar is the set of all sentences that can be
generated by the grammar.

41.3.1 Context-free grammars and BNF

To express the syntax of programming languages, we normally restrict ourselves to
the family of context-free grammars (and its subfamilies) [Linz 2017] [Wikipedia]
2018a. In a context-free grammar (CFG), the production rules have the form

A → y

where A ∈ V and y is a sequence of zero or more symbols from V ∪ T . This
means that an occurence of nonterminal A can be replaced by the sequence x.

We often express a grammar using a metalanguage such as the Backus-Naur
Form (BNF) or extended Backus-Naur Form (BNF) [Wikipedia 2018a].

For example, consider the following BNF description of a grammar for the
unsigned binary integers:

<binary> ::= <digit>
<binary> ::= <digit> <binary>

3

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

<digit> ::= '0'
<digit> ::= '1'

The nonterminals are the symbols shown in angle brackets: <binary> and
<digit>.

The terminals are the symbols shown in single quotes: '0' and '1'.

The production rules are shown with a nonterminal on the left side of the
metasymbol ::= and its replacement sequence of nonterminal and terminal
symbols on the right side.

Unless otherwise noted, the start symbol is the nonterminal on the left side of
the first production rule.

For multiple rules with the same left side, we can use the | metasymbol to write
the alternative right sides concisely. The four rules above can be written as
follows:

<binary> ::= <digit> | <digit> <binary>
<digit> ::= '0' | '1'

We can also use the extended BNF metasymbols:

• { and } to denote that the symbols between the braces are repeated zero
or more times

• [and] to denote that the symbols between the brackets are optional
(i.e. occur at most once)

41.3.2 Derivations

Consider a derivation of the sentence 101 using the grammar for unsigned binary
numbers above.

• Start symbol — <binary>
• Apply rule 2 — <digit> <binary>
• Apply rule 2 — <digit> <digit> <binary>
• Apply rule 3 — <digit> 0 <binary>
• Apply rule 4 — 1 0 <binary>
• Apply rule 1 — 1 0 <digit>
• Apply rule 4 — 1 0 1

This is not the only possible derivation for 101. Let’s consider a second derivation
of 101.

• Start symbol — <binary>
• Apply rule 2 — <digit> <binary>
• Apply rule 4 — 1 <binary>
• Apply rule 2 — 1 <digit> <binary>
• Apply rule 3 — 1 0 <binary>

4

• Apply rule 1 — 1 0 <digit>
• Apply rule 4 — 1 0 1

The second derivation applies the same rules the same number of times, but
it applies them in a different order. This case is called the leftmost derivation
because it always replaces the leftmost nonterminal in the sentential form.

Both of the above derivations can be represented by the derivation tree (or
parse tree) shown in Figure 41-1. (The numbers below the nodes show the rules
applied.)

41.3.3 Regular grammars

The grammar above for binary numbers is a special case of a context-free
grammar called a right-linear grammar [Linz 2017]. In a right-linear grammar,
all productions are of the forms

A → xB
A → x

where A and B are nonterminals and x is a sequence of zero or more terminals.
Similarly, a left-linear grammar must have all productions of the form:

A → Bx
A → x

A grammar that is either right-linear or left-linear is called a regular grammar
[Linz 2017] [Wikipedia 2018a].

(Note that all productions in a grammar must satisfy either the right- or left-linear
definitions. They cannot be mixed.)

We can recognize sentences in a regular grammar with a simple “machine”
(program)—a deterministic finite automaton (DFA).

In general, we must use a more complex “machine”—a pushdown automaton
(PDA)—to recognize a context-free grammar.

We leave a more detailed study of regular and context-free grammars to courses
on formal languages, automata, or compiler construction.

Now let’s consider the concrete syntaxes for the ELI Calculator language—first
infix, then prefix.

41.4 Infix syntax

An infix syntax for expressions is a syntax in which most binary operators
appear between their operands as we tend to write them in mathematics and in
programming languages such as Java and Haskell. For example, the following
are intended to be valid infix expressions:

5

https://en.wikipedia.org/wiki/Regular_grammar

Figure 41-1: Derivation (parse) tree for binary number 101

6

3
-3
x
1+1
x + 3
(x + y) * (2 + z)

For example, we can present the concrete syntax of our core Calculator language
with the grammar below. Here we just consider expressions made up of decimal
integer constants; variable names; binary operators for addition, subtraction,
multiplication, and division; and parentheses to delimit nested expressions.

We express the upper levels of the infix expression’s syntax with the following
context-free grammar where <expression> is the start symbol.

<expression> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <var> | <val>

| '(' <expression> ')'
<val> ::= ['-'] <unsigned>
<var> ::= <id>
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'

Normally we want operators such as multiplication and division to bind more
tightly than addition and subtraction. That is, we want expression x + y * z to
have the same meaning as x + (y * z). To accomplish this in the context-free
grammar, we position <addop> in a higher-level grammar rule than <mulop>.

We can express the lower (lexical) level of the expression’s grammar with the
following production rules:

<id> ::= <firstid> | <firstid> <idseq>
<idseq> ::= <restid> | <restid> <idseq>
<firstid> ::= <alpha> | '_'
<restid> ::= <alpha> | '_' | <digit>
<unsigned> ::= <digit> | <digit> <unsigned>
<digit> ::= any numeric character
<alpha> ::= any alphabetic character

The variables <digit> and <alpha> are essentially terminals. Thus the above
is a regular grammar. (We can also add the rules for recognition of <addop>
and <mulop> and rules for recognition of the terminals (,), and - to the regular
grammar.)

We assume that identifiers and constants extend as far to the “right” as possible.
That is, an <id> begins with an alphabetic or underscore character and extends
until it is terminated by some character other than an alphabetic, numeric, or
underscore character (e.g. by whitespace or special character). Similarly for
<unsigned>.

7

Otherwise, the language grammar ignores whitespace characters (e.g. blanks,
tabs, and newlines). The language also supports end of line comments, any
characters on a line following a -- (double dash).

We can use a parsing program (i.e. a parser) to determine whether a concrete
expression (e.g. 1 + 1) satisfies the grammar and to build a corresponding parse
tree [Wikipedia 2018a].

Aside: In a previous section, we use the term derivation tree to refer to a tree
that we construct from the root toward the leaves by applying production rules
from the grammar. We usually call the same tree a parse tree if we construct it
from the leaves (a sentence) toward the root.

Figure 41-2 shows the parse tree for infix expression 1 + 1. It has <expression>
at its root. The children of a node in the parse tree depend upon the grammar
rule application needed to generate the concrete expression. Thus the root
<expression> has either one child—a <term> subtree—or three children—a
<term> subtree, an <addop> subtree, and an <expression> subtree.

If the parsing program returns a boolean result instead of building a parse tree,
we sometimes call it a recognizer program.

41.5 Prefix syntax

An alternative is to use a parenthesized prefix syntax for the expressions. This is
a syntax in which expressions involving operators are of the form

(op operands)

where op denotes some “operator” and operands denotes a sequence of zero or
more expressions that are the arguments of the given operator. This is a syntax
similar to the language Lisp.

In this syntax, the examples from the section on the infix syntax can be expressed
something like:

3
3
x
(+ 1 1)
(+ x 3)
(* (+ x y) (+ 2 z))

We express the upper levels of a prefix expression’s syntax with the following
context-free grammar, where <expression> is the start symbol.

<expression> ::= <var> | <val> | <operexpr>
<var> ::= <id>
<val> ::= ["-"] <unsigned>
<operexpr> ::= '(' <operator> <operandseq> ')'

8

https://en.wikipedia.org/wiki/Parsing

Figure 41-2: Parse tree for infix 1 + 1

9

<operandseq> ::= { <expression> }
<operator> ::= '+' | '*' | '-' | '/' | ...

We can express the lower (lexical) level of the expression’s grammar with basically
the same regular grammar as with the infix syntax. (We can also add the rule
for recognition of <operator> and for recognition of the terminals (,), and -
to the regular grammar

The parse tree for prefix expression (+ 1 1) is shown in Figure 41-3.

Because the prefix syntax expresses all operations in a fully parenthesized form,
there is no need to consider the binding powers of operators. This makes parsing
easier.

The prefix also makes extending the language to other operators—and keywords—
much easier. Thus we will primarily use the prefix syntax in this and other cases
studies.

We return to the problem of parsing expressions in a later chapter.

41.6 What Next?

This chapter introduced the formal concepts related to a language’s concrete
syntax. It also introduced the ELI (Exploring Languages with Interpreters)
Calculator language, which is the simple language we use in the following five
chapters.

The next chapter examines the concept of abstract syntax and evaluation, using
the ELI Calculator language as an example.

41.7 Exercises

TODO

41.8 Acknowledgements

I initially developed the ELI Calculator language (then called the Expression
Language) case study for the Haskell-based offering of CSci 556, Multiparadigm
Programming, in Spring 2017. I based this work, in part, on ideas from:

• the 2016 version of my Scala-based Expression Tree Calculator case study
from my Notes on Scala for Java Programmers [Cunningham 2018] (which
was itself adapted from the the tutorial [Schniz 2018])

• the Lua-based Expression Language 1 and Imperative Core interpreters I
developed for the Fall 2016 CSci 450 course

10

https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html

Figure 41-3: Parse tree for prefix (+ 1 1)

11

• Kamin’s textbook [Kamin 1990] and my work to implement three (Core,
Lisp, and Scheme) of these interpeters in Lua in 2013

• sections 1.2, 3.3, and 5.1 of the Linz textbook [Linz 2017]

• section 1.3 and 1.4 of the Sestoft textbook [Sestoft 2012]

• Wikipedia articles [Wikipedia 2018a] on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing

• the Wikipedia articles [Wikipedia 2018b] on Abstract Syntax and Associa-
tive Array.

In 2017, I continued to develop this work as Chapter 10, Expression Language
Syntax and Semantics, of my 2017 Haskell-based programming languages text-
book.

In Summer 2018, I divided the previous Expression Language Syntax and
Semantics chapter into three chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Section 10.2 became Chapter 41, Calculator Concrete Syntax (this chapter),
sections 10.3-5 and 10.7-8 became Chapter 42, Calculator Abstract Syntax &
Evaluation, and sections 10-6 and 10-9 and section 11.5 were expanded into
Chapter 43, Calculator Modular Structure.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

41.9 References

[Cunningham 2018]: H. Conrad Cunningham. Notes on Scala for Java Pro-
grammers, 2018 (which is itself adapted from the tutorial [Schinz 2018]
Scala for Java Programmers

[Kamin 1990]: Samuel N. Kamin. Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, 1990.

[Linz 2017]: Peter Linz. An Introduction to Formal Languages and Automata,
Fifth Edition, Jones and Bartlett, 2017.

[Schinz 2018]: Michel Schinz and Philipp Haller. A Scala Tutorial for Java
Programmers, Scala Language Website, accessed February 2018.

[Sestoft 2012]: Peter Sestoft. Programming Language Concepts, Springer,
2012.

[Wikipedia 2018a]: Wikipedia. Articles on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing. Accessed 9 August 2018.

[Wikipedia 2018b]: Wikipedia. Articles on Abstract Syntax, Associative
Array, Accessed 9 August 2018.

12

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array
https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html%3E
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html%3E
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array

41.10 Terms and Concepts

Syntax, concrete syntax, formal grammar (variable and terminal symbols, alpha-
bet, start or goal symbol), production rule, sentence, sentential form, language,
context-free grammar, Backus-Naur Form (BNF), derivation, leftmost derivation,
derivation tree, right-lean and right-linear grammar, regular grammar, deter-
ministic finite automaton (DFA), pushdown automaton (PDA), infix and prefix
syntaxes, lexical level, parsing, parser, parse tree, infix and prefix syntax.

13

	Calculator: Concrete Syntax
	Chapter Introduction
	Concrete Syntax
	Grammars
	Context-free grammars and BNF
	Derivations
	Regular grammars

	Infix syntax
	Prefix syntax
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

