30 Infinite Data Structures

30.1 Chapter Introduction ... 2
30.2 Infinite Lists ... 2
30.3 Iterate .. 3
30.4 Prime Numbers: Sieve of Eratosthenes 4
30.5 Circular Structures .. 6
30.6 What Next? ... 7
30.7 Exercises .. 7
30.8 Acknowledgements .. 7
30.9 References ... 7
30.10 Terms and Concepts .. 8
30 Infinite Data Structures

30.1 Chapter Introduction

One particular benefit of lazy evaluation is that functions in Haskell can manipulate “infinite” data structures. Of course, a program cannot actually generate or store all of an infinite object, but lazy evaluation will allow the object to be built piece-by-piece as needed and the storage occupied by no-longer-needed pieces to be reclaimed.

This chapter explores Haskell programming techniques for infinite data structures such as lists.

TODO: - Complete chapter. - Separate out code, make sure works for Haskell 2010.

30.2 Infinite Lists

In Chapter 18, we looked at generators for infinite arithmetic sequences such as \([1..]\) and \([1,3..]\). These infinite lists are encoded in the functions that generate the sequences. The sequences are only evaluated as far as needed.

For example, \texttt{take 5 [1..]} yields:

\[1, 2, 3, 4, 5\]

Haskell also allows infinite lists of infinite lists to be expressed as shown in the following example which generates a table of the multiples of the positive integers.

\[
\text{multiples} :: [[\text{Int}]]
\]

\[
\text{multiples} = \left[\left[m*n \mid m<-[1..] \right] \mid n \left<-[1..] \right] \right]
\]

Thus \texttt{multiples} represents an infinite list, as shown below (not valid Haskell code):

\[
\left[\left[1, 2, 3, 4, 5, \ldots \right],
\left[2, 4, 6, 8,10, \ldots \right],
\left[3, 6, 9,12,14, \ldots \right],
\left[4, 8,12,16,20, \ldots \right],
\ldots \right]
\]

However, if we evaluate the expression

\[
\text{take 4 (multiples !! 3)}
\]

we get the terminating result:

\[4, 8, 12, 16\]
Note: Remember that the operator \(\textsf{xs} !\! n \) returns element \(n \) of the list \(\textsf{xs} \) (where the head is element \(0 \)).

Haskell’s infinite lists are not the same as infinite sets or infinite sequences in mathematics. Infinite lists in Haskell correspond to infinite computations whereas infinite sets in mathematics are simply definitions.

In mathematics, set \(\{x^2 \mid x \in \{1, 2, 3\} \land x^2 < 10\} = \{1, 4, 9\} \).

However, in Haskell, the expression

\[
\text{show } [x \times x \mid x \leftarrow [1..], x \times x < 10]
\]

yields:

\[
[1, 4, 9]
\]

This is a computation that never returns a result. Often, we assign this computation the value \(1:4:9:⊥\) (where \(⊥\), pronounced “bottom” represents an undefined expression).

But the expression

\[
\text{takeWhile } (<10) [x \times x \mid x \leftarrow [1..]]
\]

yields:

\[
[1, 4, 9]
\]

Reference: This section is based, in part, on section 7.1 of the Bird and Wadler textbook [Bird 1988] and parts of Wentworth’s tutorial [Wentworth 1990].

30.3 Iterate

In mathematics, the notation \(f^n \) denotes the function \(f \) composed with itself \(n \) times. Thus, \(f^0 = \text{id} \), \(f^1 = f \), \(f^2 = f.f \), \(f^3 = f.f.f \), \(\cdots \).

A useful function is the function \textit{iterate} such that (not valid Haskell code):

\[
\textit{iterate } f \ x = [x, f \ x, f^2 \ x, f^3 \ x, \ldots \]
\]

The Haskell standard Prelude defines \textit{iterate} recursively as follows:

\[
\text{iterate} :: (a -> a) -> a -> [a]
\]

\[
\text{iterate } f \ x = x : \text{iterate} f (f \ x)
\]

For example, suppose we need the set of all powers of the integers.

We can define a function \textit{powertables} would expand as follows (not valid Haskell code):

\[
\begin{align*}
[&[1, 2, 4, 8, \ldots] \\
&[1, 3, 9, 27, \ldots] \\
&[1, 4, 16, 64, \ldots]
\end{align*}
\]
[1, 5, 25, 125, ...
...
]

Using \texttt{iterate} we can define \texttt{powertables} compactly as follows:

\begin{verbatim}
powertables :: [[Int]]
powertables = [iterate (*n) 1 | n <- [2..]]
\end{verbatim}

As another example, suppose we want a function to extract the decimal digits of a positive integer. We can define \texttt{digits} as follows:

\begin{verbatim}
digits :: Int -> [Int]
digits = reverse . map (mod 10) . takeWhile (/= 0) . iterate (/10)
\end{verbatim}

Let's consider how \texttt{digits 178} evaluates (not actual reduction steps).

\begin{verbatim}
digits 178
\end{verbatim}
\begin{verbatim}
\rightarrow reverse . map (mod10) . takeWhile (/= 0) [178, 17, 1, 0, 0, ...]
\rightarrow reverse . map (mod10) [178, 17, 1]
\rightarrow reverse [8, 7, 1]
\rightarrow [1, 7, 8]
\end{verbatim}

Reference: This section is based in part on section 7.2 of the Bird and Wadler textbook [Bird 1988].

30.4 Prime Numbers: Sieve of Eratosthenes

The Greek mathematician Eratosthenes described essentially the following procedure for generating the list of all \textit{prime numbers}. This algorithm is called the \textit{Sieve of Eratosthenes}.

1. Generate the list 2, 3, 4, ···
2. Mark the first element \(p\) as prime.
3. Delete all multiples of \(p\) from the list.
4. Return to step 2.

Not only is the 2-3-4 loop infinite, but so are steps 1 and 3 themselves.

There is a straightforward translation of this algorithm to Haskell.

\begin{verbatim}
primes :: [Int]
primes = map head (iterate sieve [2..])
sieve (p:xs) = [x | x <- xs, x `mod` p /= 0]
\end{verbatim}
Note: This uses an intermediate infinite list of infinite lists; even though it is evaluated lazily, it is still inefficient.

We can use function `primes` in various ways, e.g. to find the first 1000 primes or to find all the primes that are less than 10,000.

```haskell
take 1000 primes
takeWhile (<10000) primes
```

Calculations such as these are not trivial if the computation is attempted using arrays in an “eager” language like Pascal—in particular it is difficult to know beforehand how large an array to declare for the lists.

However, by separating the concerns, that is, by keeping the computation of the primes separate from the application of the boundary conditions, the program becomes quite modular. The same basic computation can support different boundary conditions in different contexts.

Now let’s transform the `primes` and `sieve` definitions to eliminate the infinite list of infinite lists. First, let’s separate the generation of the infinite list of positive integers from the application of `sieve`.

```haskell
primes = rsieve [2..]

rsieve (p:ps) = map head (iterate sieve (p:ps))
```

Next, let’s try to transform `rsieve` into a more efficient definition.

```haskell
rsieve (p:ps) = \{ rsieve \} 
    map head (iterate sieve (p:ps))
= \{ iterate \} 
    map head ((p:ps) : (iterate sieve (sieve (p:ps)) ))
= \{ map.2, head \} 
    p : map head (iterate sieve (sieve (p:ps)) )
= \{ sieve \} 
    p : map head (iterate sieve [x | x <- ps, x `mod` p /= 0 ])
= \{ rsieve \} 
    p : rsieve [x | x <- ps, x `mod` p /= 0 ]
```

This calculation gives us the new definition:

```haskell
rsieve (p:ps) = p : rsieve [x | x <- ps, x `mod` p /= 0 ]
```

This new definition is, of course, equivalent to the original one, but it is slightly more efficient in that it does not use an infinite list of infinite lists.
30.5 Circular Structures

Suppose a program produces a data structure (e.g. a list) as its output. And further suppose the program feeds that output structure back into the input so that later elements in the structure depend on earlier elements. These might be called circular, cyclic, or self-referential structures.

Consider a list consisting of the integer one repeated infinitely:

\[
\text{ones} = 1 : \text{ones}
\]

As an expression graph, \(\text{ones}\) consists of a cons operator with two children, the integer 1 on the left and a recursive reference to \(\text{ones}\) (i.e. a self loop) on the right. Thus the infinite list \(\text{ones}\) is represented in a finite amount of space.

Function \(\text{numsFrom}\) below is a perhaps more useful function. It generates a list of successive integers beginning with \(n\):

\[
\text{numsFrom} :: \text{Int} \rightarrow \text{[Int]}
\]

\[
\text{numsFrom} \ n = n : \text{numsFrom} \ (n+1)
\]

Using \(\text{numsFrom}\) we can construct an infinite list of the natural number multiples of an integer \(m\):

\[
\text{multiples} :: \text{Int} \rightarrow \text{[Int]}
\]

\[
\text{multiples} \ m = \text{map} \ ((\ast) \ m) \ \text{(numsFrom} \ 0)
\]

Of course, we cannot actually process all the members of one of these infinite lists. If we want a terminating program, we can only process some finite initial segment of the list. For example, we might want all of the multiples of 3 that are at most 2000:

\[
\text{takeWhile} \ ((\geq) \ 2000) \ \text{(multiples} \ 3)
\]

We can also define a program to generate a list of the Fibonacci numbers in a circular fashion similar to \(\text{ones}\):

\[
\text{fibs} :: \text{[Int]}
\]

\[
\text{fibs} = 0 : 1 : (\text{zipWith} \ (+) \ \text{fibs} \ \text{tail} \ \text{fibs})
\]

Proofs involving infinite lists are beyond the current scope of this textbook. See the Bird and Wadler textbook for more information [Bird 1988]/.

Reference: This is based, in part, on section 7.6 of the Bird and Wadler textbook [Bird 1988] and Chapter 9 of Wentworth’s tutorial [Wentworth 1990].

TODO: Finish Chapter
30.6 What Next?

TODO

30.7 Exercises

TODO

30.8 Acknowledgements

In Summer 2018, I adapted and revised this chapter from:

- chapter 15 of my *Notes on Functional Programming with Haskell* [Cunningham 2014]

These previous notes drew on the presentations in the 1st edition of the Bird and Wadler textbook [Bird 1988], Wentworth’s tutorial [Wentworth 1990], and other sources.

I incorporated this work as new Chapter 30, Infinite Data Structures, in the 2018 version of the textbook *Exploring Languages with Interpreters and Functional Programming* and continue to revise it.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded LaTeX markup for the mathematical formulas and then translate the document to HTML, PDF, and other forms as needed.

30.9 References

30.10 Terms and Concepts

Infinite data structures, lazy evaluation, infinite sets, infinite sequences, infinite lists, infinite computations, bottom \(\perp\), iterate, prime numbers, Sieve of Eratosthenes, separation of concerns, circular/cyclic/self-referential structures.