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23 Data Abstraction Revisited

23.1 Chapter Introduction

This chapter revisits the specification, design, and implementation of data
abstraction modules in Haskell. It follows the general approach introduced in
Chapter 7 but uses algebraic data types (Chapter 21) to represent the data.
An algebraic data enables the Haskell module implementing the abstraction to
encapsulate the details of the data structure.

The goals of this chapter are to:

• reinforce the methods for specification and design of data abstractions

• illustrate how to use Haskell modules and algebraic data types to enforce
the encapsulation of a module’s implementation secrets

• introduce additional concepts and terminology for data abstractions

The concepts and terminology in this chapter are mostly general. They are
applicable to most any language. Here we look specifically at Haskell. (I have
implemented basically the same data abstraction module in Scala and Elixir.)

23.2 Terminology

Chapter 7 used the term data abstraction.

This chapter uses the related term abstract data type to refer to a data abstraction.
The data abstraction module defines and exports a user-defined type (i.e. an
algebraic data type) and a set of operations (i.e. functions) on that type. The
type is abstract in the sense that its concrete representation is hidden; only the
module’s operations may manipulate the representation directly.

For convenience, this chapter sometimes uses acronym ADT to refer to an
abstract data type.

In Chapters 6 and 7, we explored the concepts of contracts, which include
preconditions and postconditions for the functions in the module and interface
and implementation) invariants for the data created and manipulated by the
module. For convenience, this chapter refers to these as the abstract model for
the ADT.

23.3 Example: Doubly Labelled Digraph

In this chapter, we develop a family of doubly labelled digraph data structures.

As a graph, the data structure consists of a finite set of vertices (nodes) and a
set of edges. Each edge connects two vertices. (Some writers require that the set
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of vertices be nonempty, but here we prefer to allow an empty graph to have
no vertices. But the question remains whether such a graph with no vertices is
pointless concept.)

As a directed graph (or digraph), each pair of vertices has at most one edge
connecting them; the edge has a direction from one of the edges to the other.

As a doubly labelled graph, each vertex and each edge has some user-defined
data (i.e. labels) attached.

This chapter draws on the discussion of digraphs and their specification in
Chapters 1 and 10 of the Dale and Walker book Abstract Data Types [Dale 1996].

23.4 Use Case

For what purpose can we use a doubly labelled digraph data structure?

One concrete use case is to represent the game world in an implementation of
an adventure game.

For example, in the Wizard’s Adventure Game from Chapter 5 of Land of Lisp:
Learn to Program in Lisp, One Game at a Time [Barski 2011], the game’s
rooms become vertices, passages between rooms become edges, and descriptions
associated with rooms or passages become labels on the associated vertex or
edge (as shown in Figure 23-1).

Figure 23-1: Labelled Digraph for Wizard’s Adventure Game

Aside: By using a digraph to model the game world, we disallow multiple passages
directly from one room to another. By changing the graph to a multigraph, we
can allow multiple directed edges from one vertex to another.

The Adventure game must create and populate the game world initially, but it
does not typically modify the game world during play. It maintains the game
state (e.g. player location) separately from the game world. A player moves from
room to room during play; the labelled digraph gives the static structure and
descriptions of the game world.

4



23.5 Defining ADTs

How can we define an abstract data type?

The behavior of an ADT is defined by a set of operations that can be applied to
an instance of the ADT.

Each operation of an ADT can have inputs (i.e. parameters) and outputs
(i.e. results). The collection of information about the names of the operations
and their inputs and outputs is the interface of the ADT.

23.5.1 Specification

To specify an ADT, we need to give:

1. the name of the ADT

2. the sets (or domains) upon which the ADT is built. These include the
type being defined and the auxiliary types (e.g. primitive data types and
other ADTs) used as parameters or return values of the operations.

3. the signatures (syntax or structure) of the operations

• name
• input sets (i.e. the types, number, and order of the parameters)
• output set (i.e. the type of the return value)

4. the semantics (or meaning) of the operations

Note: In this chapter, we more state the specification of the data abstraction
more systematically than in Chapter 7. But we are doing essentially the same
things we did in Chapter 7.

23.5.2 Operations

We categorize an ADT’s operations into four groups depending upon their
functionality:

• A constructor (sometimes called a creator, factory, or producer function)
constructs and initializes an instance of the ADT.

• A mutator (sometimes called a modifier, command, or setter function)
returns the instance with its state changed.

• An accessor (sometimes called an observer, query, or getter function)
returns information from the state of an instance without changing the
state.

• A destructor destroys an instance of the ADT.
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We normally list the operations in that order.

For a language with immutable data structures like Haskell, a mutator returns a
distinct new instance of the ADT with a state that is a modified version of the
original instance’s state. That is, we are taking an applicative (or functional or
referentially transparent) approach to ADT specifications.

Note: Of course, in an imperative language, a mutator can change the state of
an instance in place. That may be more efficient, but it tends to be less safe. It
also tends to make concurrent use of an abstract data type more problematic.

Technically speaking, a destructor is not an operation of the ADT. We can
represent the other types of operations as functions on the sets in the specification.
However, we cannot define a destructor in that way. But destructors are of
pragmatic importance in the implementation of ADTs, particularly in languages
that do not have automatic storage reclamation (i.e. garbage collection).

23.5.3 Approaches to semantics

There are two primary approaches for specifying the semantics of the operations:

• The axiomatic (or algebraic) approach gives a set of logical rules (properties
or axioms) that relate the operations to one another. The meanings of the
operations are defined implicitly in terms of each other.

• The constructive (or abstract model) approach describes the meaning of
the operations explicitly in terms of operations on other abstract data
types. The underlying model may be any well-defined mathematical model
or a previously defined ADT.

In some ways, the axiomatic approach is the more elegant of the two approaches.
It is based in the well-established mathematical fields of abstract algebra and
category theory. Furthermore, it defines the new ADT independently of other
ADTs. To understand the definition of the new ADT it is only necessary to
understand its axioms, not the semantics of a model.

However, in practice, the axiomatic approach to specification becomes very
difficult to apply in complex situations. The constructive approach, which
builds a new ADT from existing ADTs, is the more useful methodology for most
practical software development situations.

In this chapter, we use the constructive approach.

23.6 Specification of Labelled Digraph ADT

Now let’s look at a constructive specification of the doubly labelled digraph.
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First, we specify the ADT as an implementation-independent abstraction. The
secret of the ADT module is the data structure used internally to implement the
doubly labelled digraph.

Then, we examine two implementations of the abstraction:

• using Haskell lists to represent the vertex and edge sets

• using a Haskell Map to map a vertex to the set of outgoing edges from that
vertex

Before we specify the ADT, let’s define the mathematical notation we use. We
choose notation that can readily be used in comments in program.

23.6.1 Notation

We use the following notation and terminology to describe the abstract data
type’s model and its semantics.

• (ForAll x, y :: p(x,y)) is true if and only if predicate p(x,y) is true
for all values of x and y.

• (Exists x, y :: p(x,y)) is true if and only if there is at least one pair
of values x and y for which p(x,y) is true.

• (# x, y :: p(x,y)) yields a count of pairs (x,y) for which p(x,y) is
true.

• <=> denotes logical equivalence. p <=> q is true if and only if the logical
(Boolean) values p and q are equal (i.e. both true or both false).

• x IN C is true if and only if value x is member of a collection C (such as a
set, bag, or sequence). Similarly, x NOT_IN C denotes the negation of x
IN C.

• A type consists of a set of values and a set of operations. We sometimes
say a value is IN a type to mean the value is IN the set associated with
the type.

• For sets C and D, C UNION D denotes set union, that is, a set that includes
all the element of both C and D.

• For sets C and D, C INTERSECT D denotes set intersection, that is, a set
that includes all elements that are both in C and in D.

• For sets C and D, C - D denotes set difference, that is, the set C with all
elements of set D removed.

• For sets C and D, C SUBSET_OF D denotes that C is subset of D, that is, all
the elements of C also occur in D.
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• A Cartesian product of two sets C and D is the set of all ordered pairs (x,y)
where x IN C and y IN D.

• A tuple such as (x,*) appearing in a collection such as { (x,*) } denotes
element x grouped with all possible values of the second component. Note:
We could also write { (x,*) } using a quantification as:

{ (x,c) :: c IN some_domain }

• A relation on sets C and D is a subset of the Cartesian product of C and D.
That is, a set of tuples.

• A function on sets C and D is a special case of a relation on C and D where
each value from C occurs in at most one tuple in the relation.

• A total function is defined for all elements of its domain. A partial function
is defined for a subset of the elements of its domain.

23.6.2 Sets

The abstract data type being defined is named Digraph.

We specify that this abstract data type be represented by a Haskell algebraic
data type Digraph a b c, which has three type parameters (i.e. sets):

1. VertexType, the set of possible vertices (i.e. vertex identifiers) in the
Digraph

2. VertexLabelType, the set of possible labels on vertices in the Digraph

3. EdgeLabelType, the set of possible labels on edges in the Digraph

Given this ADT defines a digraph, edges can be identified by ordered pairs
(tuples) of vertices.

Values the above types, in particular the labels, may have several components.

23.6.3 Signatures

We define the following operations on the Labelled Digraph ADT (shown below
as Haskell function signatures).

Given the primary use case described above, we specify a constructor that to cre-
ate an empty graph (new_graph), a mutator to add a new vertex (add_vertex),
and mutator to add a new edge between existing vertices (add_edge).

We also specify mutators to remove vertices (remove_vertex) and edges
(remove_edge) and to update the labels on vertices (update_vertex) and edges
(update_edge). (Note: In the identified use case, these are likely used less often
than the mutators that add new vertices and edges.)
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Constructors:

new_graph :: Digraph a b c

Mutators:

add_vertex :: Digraph a b c -> a -> b -> Digraph a b c
remove_vertex :: Digraph a b c -> a -> Digraph a b c
update_vertex :: Digraph a b c -> a -> b -> Digraph a b c
add_edge :: Digraph a b c -> a -> a -> c -> Digraph a b c
remove_edge :: Digraph a b c -> a -> a -> Digraph a b c
update_edge :: Digraph a b c -> a -> a -> c -> Digraph a b c

We specify query functions to check whether the labelled digraph is empty
(is_empty), has a given vertex (has_vertex), and has an edge between two
vertices (has_edge).

We specfiy accessors to retrieve the label associated with a given vertex
(get_vertex) and edge (get_edge).

Given the identified use case, we also specify accessors to return lists of all vertices
in the graph (all_vertices) and of just their labels (all_vertices_labels)
and to return lists of all outgoing edges from a vertex (from_edges) and of just
their labels (from_edges_labels).

Accessors:

is_empty :: Digraph a b c -> Bool
get_vertex :: Digraph a b c -> a -> b
has_vertex :: Digraph a b c -> a -> Bool
get_edge :: Digraph a b c -> a -> a -> c
has_edge :: Digraph a b c -> a -> a -> Bool
all_vertices :: Digraph a b c -> [a]
from_edges :: Digraph a b c -> a -> [a]
all_vertices_labels :: Digraph a b c -> [(a,b)]
from_edges_labels :: Digraph a b c -> a -> [(a,c)]

Given the identified use case and that Haskell uses garbage collection, no de-
structor seems to be needed in most cases.

Destructors: None

23.6.4 Semantics

We model the state of the instance of the Labelled Digraph ADT with an abstract
value G such that G = (V,E,VL,EL) with G’s components satisfying the following
Labelled Digraph Properties.

• V is a finite subset of values from the set VertexType. V denotes the
vertices (or nodes) of the digraph.
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• Any two elements of V can be compared for equality.

• E is a binary relation on the set V. A pair (v1,v2) IN E denotes that there
is a directed edge from v1 to v2 in the digraph.

Note that this model allows at most one (directed) edge from a vertex v1
to vertex v2. It allows a directed edge from a vertex to itself.

Also, because vertices can be compared for equality, any two edges can
also be compared for equality.

• VL is a total function from set V to the set VertexLabelType.

• EL is a total function from set E to the set EdgeLabelType.

23.6.4.1 Interface invariant

We define the following interface invariant for the Labelled Digraph ADT:

Any valid labelled digraph instance G, appearing in either the argu-
ments or return value of a public ADT operation, must satisfy the
Labelled Digraph Properties.

23.6.4.2 Constructive semantics

We specify the various ADT operations below using their type signatures, precon-
ditions, and postconditions. Along with the interface invariant, these comprise
the (implementation-independent) specification of the ADT (i.e. its abstract
interface).

In these assertions, for a digraph g that satisfies the invariants, G(g) denotes its
abstract model(V,E,VL,EL) as described above. The value Result denotes the
return value of function.

• Constructor new_graph creates and returns a new instance of the graph
ADT.

– Precondition:

True

– Postcondition:

G(Result) == ({},{},{},{})

• Accessor is_empty g returns True if and only if graph g is empty.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

Result == (V == {} && E == {})
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• Mutator add_vertex g nv nl inserts vertex nv with label nl into graph
g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && nv NOT_IN V

– Postcondition:

G(Result) == (V UNION {nv}, E, VL UNION {(nv,nl)}, EL)

• Mutator remove_vertex g ov deletes vertex ov from graph g and returns
the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

G(Result) == (V', E', VL', EL')
where V' = V - {ov}

E' = E - {(ov,*),(*,ov)}
VL' = VL - {(ov,*)}
EL' = EL - {((ov,*),*),((*,ov),*)}

• Mutator update_vertex g ov nl changes the label on vertex ov in graph
g to be nl and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

G(Result) == (V - {ov}, E, VL', EL)
where VL' = (VL - {(ov,VL(ov))}) UNION {(ov,nl)}

• Accessor get_vertex g ov returns the label from vertex ov in graph g

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

Result == VL(ov)

• Accessor has_vertex g ov returns True if and only if ov is a vertex of
graph g.

– Precondition:

G(g) = (V,E,VL,EL) && ov IN VertexLabelType

– Postcondition:

G(Result) == ov IN V
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• Mutator add_edge g v1 v2 nl inserts an edge from vertex v1 to vertex
v2 in graph g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V && v2 IN V &&
(v1,v2) NOT_IN E

– Postcondition:

G(Result) == (V, E', VL, EL')
where E' = E UNION {(v1,v2)}

EL' = EL UNION {((v1,v2),nl)}

• Mutator remove_edge g v1 v2 deletes the edge from vertex v1 to vertex
v2 from graph g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) V - {ov} && (v1,v2) IN E

– Postcondition:

G(Result) == (V, E - {(v1,v2)}, VL, EL - { ((v1,v2),*) }

• Mutator update_edge g v1 v2 nl changes the label on the edge from
vertex v1 to vertex v2 in graph g to have label nl and returns the resulting
graph.

– Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

– Postcondition:

G(Result) == (V, E, VL, EL')
where EL' == (EL - {((v1,v2),*)}) UNION {((v2,v2),nl)

• Accessor get_edge g v1 v2 returns the label on the edge from vertex v1
to vertex v2 in graph g.

– Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

– Postcondition:

Result == EL((v1,v2))

• Accessor has_edge g v1 v2 returns True if and only if there is an edge
from a vertex v1 to a vertex v2 in graph g.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:
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Result == (v1,v2) IN E

• Accessor all_vertices g returns a sequence of all the vertices in graph
g. The returned sequence is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

(ForAll ov: ov IN Result <=> ov IN V) &&
length(Result) == size(V)

• Accessor from_edges g v1 returns a sequence of all vertices v2 such that
there is an edge from vertex v1 to vertex v2 in graph g. The returned
sequence is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

– Postcondition:

(ForAll v2: v2 IN Result <=> (v1,v2) IN E) &&
length(Result) == (# v2 :: (v1,v2) IN E)

Note: Function from_edges g v1 should return [] when v1 does not
appear in g, so that it can work well with the Wizard’s Adventure game.
We should redefine the precondition and postcondition to specify this
behavior.

• Accessor all_vertices_labels g returns a sequence of all pairs (v,l)
such that v is a vertex and l is it’s label in graph g. The returned sequence
is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

(ForAll v, l: (v,l) IN Result <=> (v,l) IN VL) &&
length(Result) == size(VL)

• Accessor from_edges_labels g v1 returns a sequence of all pairs (v2,l)
such that there is an edge (v1,v2) labelled with l in graph g.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

– Postcondition:

(ForAll v2, l :: (v2,l) IN Result <=> ((v1,v2),l) IN EL)
&& length(Result) == (# v2 :: (v1,v2 ) IN E)
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Note: Function from_edges_labels g v1 should return [] when v1 does
not appear in g, so that it can work well with the Wizard’s Adventure
game. We should redefine the precondition and postcondition to specify
this behavior.

23.6.5 Haskell module abstract interface

Below we state the header for a Haskell module Digraph_XXX that implements
the Labelled Digraph ADT. The module name suffix XXX denotes the particular
implementation for a data representation, but the signatures and semantics of
the operations are the same regardless of representation.

The module exports data type Digraph, but its constructors are not exported.
This allows modules that import Digraph_XXX to use the data type without
knowing how the data type is implemented.

If we had Digraph(..) in the export list, then the data type and all its con-
structors would be exported.

The intention of this interface is to constrain the type parameters of
Digraph a b c so that:

• Type a (i.e. type VertexType) must be in Haskell class Eq. This is es-
sentially required by the interface invariant (i.e. the Labelled Digraph
Properties).

• Types a, b, and c (i.e. types VertexType, VertexLabelType, and
EdgeLabelType) must be in Haskell class Show. This contraint enables
the vertices and labels to be displayed as text.

It may be desirable (or necessary) for an implementation to further constrain
the type parameters. For example, some implementations may need to constrain
VertexType to be from class Ord (i.e. totally ordered).

module DigraphADT_XXX
( Digraph --constraints (Eq a, Show a, Show b, Show c)
, new_graph --Digraph a b c
, is_empty --Digraph a b c -> Bool
, add_vertex --Digraph a b c -> a -> b -> Digraph a b c
, remove_vertex--Digraph a b c -> a -> Digraph a b c
, update_vertex--Digraph a b c -> a -> b -> Digraph a b c
, get_vertex --Digraph a b c -> a -> b
, has_vertex --Digraph a b c -> a -> Bool
, add_edge --Digraph a b c -> a -> a -> c -> Digraph a b c
, remove_edge --Digraph a b c -> a -> a -> Digraph a b c
, update_edge --Digraph a b c -> a -> a -> c -> Digraph a b c
, get_edge --Digraph a b c -> a -> a -> c
, has_edge --Digraph a b c -> a -> a -> Bool
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, all_vertices --Digraph a b c -> [a]
, from_edges --Digraph a b c -> a -> [a]
, all_vertices_labels--Digraph a b c -> [(a,b)]
, from_edges_labels --Digraph a b c -> a -> [(a,c)]
)

where -- definitions for the types and functions

Note: The Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and the
Cabal-Install package manager release 2.0 (August 2017) support a new mixin
package system called Backpack. This extension would enable us to define an
abstract module “DigraphADT” as a signature file with the above interface.
Other modules can then implement this abstract interface thus giving a more
explicit and flexible definition of this abstract data type.

23.7 List Implementation

This section gives an implementation of the ADT that uses Haskell lists to
represent the vertex and edge sets.

23.7.1 Labelled digraph representation

We represent the List implementation of the Labelled Digraph ADT as an instance
of the Haskell algebraic data type Digraph as shown below. (Remember that
type variable a is VertexType, b is VertexLabelType, and c is EdgeLabelType.)

data Digraph a b c = Graph [(a,b)] [(a,a,c)]

In an instance (Graph vs es):

• vs is a list of tuples (v,vl) where

– v has VertexType and represents a vertex of the digraph
– vl has VertexLabelType and is the unique label associated with

vertex v
– a vertex v occurs at most once in vs (i.e. vs encodes a function from

vertices to vertex labels)

• es is a list of tuples ((v1,v2),el) where

– v1 and v2 are vertices occurring in vs, representing a directed edge
from v1 to v2

– el has EdgeLabelType and is the unique label associated with edge
(v1,v2)

– an edge (v1,v2) occurs at most once in es (i.e. es encodes a function
from edges to edge labels)
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In terms of the abstract model, vs encodes VL directly and, because VL is a total
function on V, it encodes V indirectly. Similarly, es encodes EL directly and E
indirectly.

Of course, there are many other ways to represent the graph as lists. This
representation is biased for a context where, once built, the labelled digraph
is relatively static and the most frequent operations are the retrieval of labels
attached to vertices or edges. That is, it is biased toward the Adventure game
use case.

Given that all the type parameters must be of class Show, we also define Digraph
to also be of class Show as defined below.

instance (Show a, Show b, Show c) =>
Show (Digraph a b c) where

show (Graph vs es) =
"(Digraph " ++ show vs ++ ", " ++ show es ++ ")"

23.7.2 Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labelled Digraph ADT:

Any Haskell Digraph value (Graph vs es) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value of
an operation, must also satisfy the following:

(ForAll v, l :: (v,l) IN vs <=> (v,l) IN VL ) &&
(ForAll v1, v2, m :: (v1,v2,m) IN es <=> ((v1,v2),m) IN EL )

23.7.3 Haskell implementation

The code in this section shows a list-based implementation for several of the
operations related to vertices.

The Haskell module for the list representation of the Labelled Digraph ADT
is in source file DigraphADT_List.hs. A simple smoke test driver module is in
source file DigraphADT_TestList.hs.

The implementations of constructor new_graph and accessor is_empty are
straightforward.

new_graph :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c

new_graph = Graph [] []

is_empty :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> Bool

16

DigraphADT_List.hs
DigraphADT_TestList.hs%3E


is_empty (Graph [] _ ) = True
is_empty _ = False

Function has_vertex just needs to search through the list of vertices to determine
whether or not the vertex occurs. It relies upon VertexType being in class Eq.

has_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Bool

has_vertex (Graph vs _) ov =
not (null [ n | (n,_) <- vs, n == ov])

Because of lazy evaluation, the list comprehension only needs to evaluate far
enough to find the occurrence of the vertex in the list.

To add a new vertex and its label to the graph, add_vertex must return a new
graph with the new vertex-label pair added to the head of the vertex list. To
meet the specification, it must not allow a vertex to be added if the vertex
already occurs in the list.

add_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

add_vertex g@(Graph vs es) nv nl
| not (has_vertex g nv) = Graph ((nv,nl):vs) es
| otherwise = error has_nv
where has_nv =

"Vertex " ++ show nv ++ " already in digraph"

Function remove_vertex is a bit trickier with this representation. To remove
an existing vertex and its label from the graph, remove_vertex must return a
new graph with that vertex’s tuple removed from the list of vertices and with
any outgoing edges also removed from the list of edges.

remove_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Digraph a b c

remove_vertex g@(Graph vs es) ov
| has_vertex g ov = Graph ws fs
| otherwise = error no_ov
where ws = [ (w,m) | (w,m) <- vs, w /= ov ]

fs = [ (v1,v2,m) |
(v1,v2,m) <- es, v1 /= ov, v2 /= ov ]

no_ov = "Vertex " ++ show ov ++ " not in digraph"

The implementation of remove_vertex filters all occurrences of the vertex from
the list of vertices. Given the implementation invariant, this is not necessary.
However, this potentially adds some safety to the implementation at the possible
expense of execution time.

For an existing vertex in the list of vertices, function update_vertex replaces
the old label with the new label. Like remove_vertex, it potentially processes
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the entire list of vertices and makes the change to all occurrences, when the
implementation invariant would allow it to stop on the first (and only) occurrence.

update_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

update_vertex g@(Graph vs es) ov nl
| has_vertex g ov = Graph (map chg vs) es
| otherwise = error no_ov
where chg (w,m) = (if w == ov then (ov,nl) else (w,m))

no_ov = "Vertex " ++ show ov ++ " not in digraph"

For an existing vertex, function get_vertex retrieves the label. Because of lazy
evaluation, the search of the list of vertices stops with the first occurrence.

get_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b

get_vertex (Graph vs _) ov
| not (null ls) = head ls
| otherwise = error no_ov
where ls = [ l | (w,l) <- vs, w == ov]

no_ov = "Vertex " ++ show ov ++ " not in digraph"

The remainder of the functions are defined in file DigraphADT_List.hs.

We can create an empty labelled digraph g0 having Int identifiers for vertices,
Int labels for vertices, and Int labels for edges as follows:

g0 = (new_graph :: Digraph Int Int Int)

Then we can add a new vertex with identifier 1 and vertex label 101 as follows:

g1 = add_vertex g0 1 101

23.7.4 Improvements to the list implementation

Based on the list-based design and implementation above, what improvements
should we consider? Here are some possibilities.

1. As described above, the current list implementations of functions such
as remove_vertex and update_vertex do some unnecessary work with
respect to the implementation invariant. This could be eliminated.

2. The data representation (i.e. implementation invariant) could be changed to
allow, for example, multiple occurrences of vertices in the vertex list. This
would avoid the checks of has_vertex in add_vertex and update_vertex.
Then, as it does above, remove_vertex needs to remove all occurrences of
the vertex.

Other functions would need to be modified accordingly so that they only
access the first occurrence of a vertex (especially the all_vertices and

18

DigraphADT_List.hs


all_vertices_labels functions).

A similar change could be made to the list of edges.

Note: The Labelled Diagraph ADT specification does not specify what
the behavior should be when the referenced vertex or edge is not defined.
The change suggested in this item gives non-error behavior to those situa-
tions. Perhaps a better alternative would be to change the general ADT
specification to require specific behaviors in those cases.

3. Most of the functions throw an error exception when the vertex they
reference does not exist. A better Haskell design would redefine these
functions to return a Maybe or Either value. This would eliminate most
of the has_vertex checks and make the functions defined on all possible
inputs.

This would require changes to the overall Labelled Digraph ADT specifica-
tion and its abstract interface.

4. New functions could be added to the Labelled Digraph ADT—such as an
equality check on graphs, a constructor that creates a copy of an existing
graph, or functions to apply various graph algorithms.

5. Existing functions could be eliminated. For example, if the graph is only
constructed and used for retrieval, then the remove and update functions
could be eliminated.

23.8 Map Implementation

This section gives an implementation of the ADT that uses a Haskell Map to
map a vertex to the set of outgoing edges from that vertex

23.8.1 Labelled digraph representation

We represent the Map implementation of the Labelled Digraph ADT as an
instance of the Haskell algebraic data type Digraph as shown below. (Re-
member that type variable a is VertexType, b is VertexLabelType, and c is
EdgeLabelType.)

import qualified Data.Map.Strict as M

data Digraph a b c = Graph (M.Map a (b,[(a,c)]))

In the data constructor (Graph m), m is an instance of Data.Map.Strict. This
collection is set of key-value pairs implemented as a balanced tree, giving
logarithmic access time.

An instance of (Graph m) corresponds to the abstract model as follows:
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• The keys for the Map m collection are of VertexLabelType.

The interface invariant requires that VertexType be in class Eq. The
implementation based on Data.Map.Strict further constrains vertices to
be in subclass Ord because the vertices are the keys of the Map.

• Map m is defined for all keys v1 in vertex set V and undefined for all other
keys.

• For some vertex v1, the value of m at key v1 is a pair (l,es) where

– l is an element of VertexLabelType and is the unique label associated
with v1, that is, l = VL(v1).

– es is the list of all tuples (v2,el) such that (v1,v2) IN E, el IN
EdgeLabelType, and el = EL((v1,v2)). That is, (v1,v2) is an
edge and el is its unique label.

Given that all the type parameters must be of class Show, we also define Digraph
to also be of class Show as defined below.

instance (Show a, Show b, Show c) => Show (Digraph a b c) where
show (Graph m) = "(Digraph " ++ show (M.toAscList m) ++ ")"

23.8.2 Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labelled Digraph ADT:

Any Haskell Digraph value (Graph m) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value
of an operation, must also satisfy the following:

(ForAll v1, l, es ::
( m(v1) defined && m(v1) == (l,es) ) <=>
( VL(v1) == l &&

(ForAll v2, el :: (v2,el) IN es <=>
EL((v1,v2)) == el) ) )

23.8.3 Haskell module

The code in this section shows a map-based implementation for the same opera-
tions we examined for the list-based implementation.

The Haskell module for the map representation of the Labelled Digraph ADT
is in source file DigraphADT_Map.hs. A simple smoke test driver module is in
source file DigraphADT_TestMap.hs.

Constructor new_graph and accessors is_empty and has_vertex are just wrap-
pers for functions from Data.Map.Strict.
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new_graph :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c

new_graph = Graph M.empty

is_empty :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> Bool

is_empty (Graph m) = M.null m

has_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Bool

has_vertex (Graph m) ov = M.member ov m

To add a new vertex and label to the graph, add_vertex must return a graph
with the new key-value pair inserted into the existing graph’s Map. The value
consists of the label paired with a nil list of adjacent edges. To meet the
specification, it must not allow a vertex to be added if the vertex already occurs
in the list.

add_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

add_vertex g@(Graph m) nv nl
| not (has_vertex g nv) = Graph (M.insert nv (nl,[]) m)
| otherwise = error has_nv
where has_nv =

"Vertex " ++ show nv ++ " already in digraph"

Except for making sure the vertex to be deleted is the graph, function
remove_vertex is just a wrapper for the Data.Map.Strict.delete function.

remove_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Digraph a b c

remove_vertex g@(Graph m) ov
| has_vertex g ov = Graph (M.delete ov m)
| otherwise = error no_ov
where no_ov = "Vertex " ++ show ov ++ " not in digraph"

If the argument vertex is in the graph, then function update_vertex retrieves
its old label and edge list and then reinserts the new label paired with the same
edge list.

update_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

update_vertex g@(Graph m) ov nl
| has_vertex g ov =

Graph (M.insert ov (upd (M.lookup ov m)) m)
| otherwise = error no_ov
where upd (Just (ol,edges)) = (nl,edges)

upd _ = error no_entry
no_ov = "Vertex " ++ show ov ++ " not in digraph"
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no_entry =
"Missing/malformed value for vertex " ++ show ov

For an existing vertex, function get_vertex retrieves the associated value and
extracts the label.

get_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b

get_vertex g@(Graph m) ov
| has_vertex g ov = getlabel (M.lookup ov m)
| otherwise = error no_ov
where getlabel (Just (ol,_)) = ol

no_ov = "Vertex " ++ show ov ++ " not in digraph"

The remainder of the functions are defined in file DigraphADT_Map.hs.

The Map-based functions can be called in the same manner as the List-based
function, except that the vertices must be in class Ord{.haskell_.

23.8.4 Improvements to the map implementation

All the improvements suggested for the list-based implementation apply to the
map-based implementation except for the first.

For large graphs, the map-based implementation should perform better than the
list-based implementation.

For large graphs with many outgoing edges on each vertex, it might be useful to
implement the edge-list itself with a Map.

23.9 What Next?

This chapter revisited the issues of specification, design, and implementation
of data abstractions as modules in Haskell. It used a labelled digraph data
structure as the example.

Although we may not specify all subsequent Haskell modules as systematically
as we did in this chapter, we do use the modular style of programming in the
various interpreters developed in Chapter 41 and following.

In the future, we plan to implement a Adventure game on top of the ADT
implemented in this chapter.

23.10 Exercise Set A

1. Restate the preconditions and postconditions for functions from_edges
and from_edges so that they must return empty lists when the argument
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vertex v1 is not in the vertex set. (See the notes on these operations in
the semantic specification above.)

2. Develop a comprehensive test script for the Labelled Digraph ADT imple-
mentations using blackbox, module-level, functional testing as described
in Chapters 11 and 12.

3. Adapt the Haskell Labelled Digraph ADT interface and it two implemen-
tations to use GHC’s Backpack module system.

4. Specify a similar Labelled Digraph ADT as a Java interface.

5. Give two different implementations of the Labelled Digraph ADT in Java
using the specification from the previous exercise.

6. Specify a similar Labelled Digraph ADT as a Python 3 module.

7. Give two different implementations of the Labelled Digraph ADT in Python
3 using the specification from the previous exercise.

8. Choose one of the improvements described in the “Improvements in the
list implementation” subsection and change the specification and list im-
plementation as needed for the improvement.

9. Choose one of the improvements and change the specification and map
implementation as needed for the improvement.

10. Specify a doubly labelled directed multigraph data structure to replace the
doubled labelled digraph. (That is, allow multiple directed edges from one
vertex to another.)

11. Give an implementation of the doubly labelled directed multigraph specified
in the previous exercise.

23.11 Mealy Machine Simulator Project

In this project, you are asked to design and implement Haskell modules to
represent Mealy Machines and to simulate their execution.

This kind of machine is a useful abstraction for simple controllers that listen
for input events and respond by generating output events. For example in an
automobile application, the input might be an event such as “fuel level low” and
the output might be command to “display low-fuel warning message”.

In the theory of computation, a Mealy Machine is a finite-state automaton whose
output values are determined both by its current state and the current input. It
is a deterministic finite state transducer such that, for each state and input, at
most one transition is possible.

Appendix A of the Linz textbook [Linz 2017] defines a Mealy Machine mathe-
matically by a tuple
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M = (Q,Σ,Γ, δ, θ, q0)

where

Q is a finite set of internal states
Σ is the input alphabet (a finite set of values)
Γ is the output alphabet (a finite set of values)
δ : Q× Σ −→ Q is the transition function
θ : Q× Σ −→ Γ is the output function
q0 is the initial state of M (an element of Q)

In an alternative formulation, the transition and output functions can be com-
bined into a single function:

δ : Q× Σ −→ Q× Γ

We often find it useful to picture a finite state machine as a transition graph
where the states are mapped to vertices and the transition function represented
by directed edges between vertices labelled with the input and output symbols.

23.12 Exercise Set B

1. Specify, design, and implement a general representation for a Mealy Ma-
chine as a Haskell module implementing an abstract data type. It should
hide the representation of the machine and should have, at least, the
following public operations.

• newMachine s creates a new machine with initial (and current) state
s and no transitions.

Note: This assumes that the state, input, and output sets are exactly
those added with the mutator operations below. An alternative would
be to change this function to take the allowed state, input, and output
sets.

• addState m s adds a new state s to machine m and returns an Either
wrapping the modified machine or an error message.

• addTransition m s1 in out s2 adds a new transition to machine
m and returns an Either wrapping the modified machine or an error
message. From state s1 with input in the modified machine outputs
out and transitions to state s2.

• addResets m adds all reset transitions to machine m and returns the
modified machine. From state s1 on input in the modified machine
outputs out and transitions to state s2. This operation makes the
transition function a total function by adding any missing transitions
from a state back to the initial state.
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• setCurrent m s sets the current state of machine m to s and returns
an Either wrapping the modified machine or an error message.

• getCurrent m returns the current state of machine m.

• getStates m returns a list of the elements of the state set of machine
m.

• getInputs m returns a list of the input set of machine m.

• getOutputs m returns a list of the output set of machine m.

• getTransitions m returns a list of the transition set of machine m.
Tuple (s1,in,out,s2) occurs in the returned list if and only if, from
state s1 with input in, the machine outputs out and moves to state
s2.

• getTransitionsFrom m s returns an Either wrapping a list of the
set of transitions enabled from state s of machine m or an error
message.

2. Given the above implementation for a Mealy Machine, design and imple-
ment a separate Haskell module that simulates the execution of a Mealy
Machine. It should have, at least, the following new public operations.

• move m in moves machine m from the current state given input in and
returns an Either wrapping a tuple (m',out) or an error message.
The tuple gives the modified machine m' and the output out.

• simulate m ins simulates execution of machine m from its current
state through a sequence of moves for the inputs in list ins and
returns an Either wrapping a tuple (m',outs) or an error message.
The tuple gives the modified machine m' after the sequence of moves
and the output list outs.

Note: It is possible to use a Labelled Digraph ADT module in the imple-
mentation of the Mealy Machine.

3. Implement a Haskell module that uses a different representation for the
Mealy Machine. Make sure the simulator module still works correctly.
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23.15 Terms and Concepts

Data abstraction; abstract data type (ADT), instance; specification of ADTs
using name, sets, signatures, and semantics; constructor, accessor, mutator, and
destructor operations; axiomatic and constructive semantics; abstract model
(contract, precondition, postcondition, interface and implementation invariant,
abstract interface); use of Haskell module hiding features to implement the
abstract data type’s interface; using mathematical concepts to model the data
abstraction (graph, digraph, labelled graph, multigraph, set, sequence, bag, total
and partial functions, relation); graph data structure; adventure game.

Mealy Machine, simulator, finite-state automaton (machine), deterministic finite
state transducer, state, transition, transition graph.
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