22 Overloading and Type Classes

22.1 Chapter Introduction

Chapter 5 introduced the concept of overloading. Chapters 13 and 22 introduced the related concepts of type classes and instances.

The goal of this chapter and the next chapter is to explore these concepts in more detail.

The concept of type class was introduced into Haskell to handle the problem of comparisons, but it has had a broader and more profound impact upon the development of the language than its original purpose. This Haskell feature has also had a significant impact upon the design of subsequent languages (e.g., Scala and Rust) and libraries.

The source code for this chapter is in file OverloadingMod.hs.

22.2 Polymorphism in Haskell

Chapter 5 surveyed the different kinds of polymorphism. Haskell implements two of these kinds:

1. **Parametric polymorphism** (usually just called “polymorphism” in functional languages), in which a single function definition is used for all types of arguments and results.

 For example, consider the function \(\text{length} :: [\text{a}] \to \text{Int} \), which returns the length of any finite list.

2. **Overloading**, in which the same name refers to different functions depending upon the type.

 For example, consider the \((+)\) function, which can add any supported number.

Chapter 13 examined parametric polymorphism. This chapter explores the concept of overloading.

22.3 Why Overloading?

Consider testing for membership of a Boolean list, where \(\text{eqBool} \) is an equality-testing function for Boolean values.

\[
\begin{align*}
\text{elemBool} :: \text{Bool} \to [\text{Bool}] \to \text{Bool} \\
\text{elemBool} \ x \ [] & = \text{False} \\
\text{elemBool} \ x \ (y:ys) & = \text{eqBool} \ x \ y \ |\ | \text{elemBool} \ x \ ys
\end{align*}
\]
We can define \texttt{eqBool} using pattern matching as follows:

\[
\texttt{eqBool} :: \texttt{Bool} \rightarrow \texttt{Bool} \rightarrow \texttt{Bool} \\
\texttt{eqBool} \texttt{True} \texttt{False} = \texttt{False} \\
\texttt{eqBool} \texttt{False} \texttt{True} = \texttt{False} \\
\texttt{eqBool} _ _ = \texttt{True}
\]

The above is not very general. It works for booleans, but what if we want to handle lists of integers? or of characters? or lists of lists of tuples?

The aspects of \texttt{elemBool} we need to generalize are the type of the input list and the function that does the comparison for equality.

Thus let’s consider testing for membership of a general list, with the equality function as a parameter.

\[
\texttt{elemGen} :: (\texttt{a} \rightarrow \texttt{a} \rightarrow \texttt{Bool}) \rightarrow \texttt{a} \rightarrow [exttt{a}] \rightarrow \texttt{Bool} \\
\texttt{elemGen} \texttt{eqFun} x [] = \texttt{False} \\
\texttt{elemGen} \texttt{eqFun} x (y:ys) = \texttt{eqFun} x y || \texttt{elemGen} \texttt{eqFun} x ys
\]

This allows us to define \texttt{elemBool} in terms of \texttt{elemGen} as follows:

\[
\texttt{elemBool} :: \texttt{Bool} \rightarrow [exttt{Bool}] \rightarrow \texttt{Bool} \\
\texttt{elemBool} = \texttt{elemGen} \texttt{eqBool}
\]

But really the function \texttt{elemGen} is \textit{too general} for the intended function. Parameter \texttt{eqFun} could be any

\[
\texttt{a} \rightarrow \texttt{a} \rightarrow \texttt{Bool}
\]

function, not just an equality comparison.

Another problem is that equality is a meaningless idea for some data types. For example, comparing functions for equality is a computationally intractable problem.

The alternative to the above to make \texttt{=} (i.e. equality) an overloaded function. We can then restrict the polymorphism in \texttt{elem}’s type signature to those types for which \texttt{=} is defined.

We introduce the concept of \textit{type classes} to to be able to define the group of types for which an overloaded operator can apply.

We can then restrict the polymorphism of a type signature to a class by using a \textit{context} constraint as \texttt{Eq a} \rightarrow is used below:

\[
\texttt{elem} :: \texttt{Eq a} \rightarrow \texttt{a} \rightarrow [exttt{a}] \rightarrow \texttt{Bool}
\]

We used context constraints in previous chapters. Here we examine how to define the type classes and associate data types with those classes.
22.4 Defining an Equality Class and Its Instances

We can define class \texttt{Eq} to be the set of types for which we define the \texttt{(==)} (i.e. equality) operation.

For example, we might define the \texttt{class} as follows, giving the type \texttt{signature(s)} of the associated function(s) (also called the operations or \texttt{methods} of the class).

\begin{verbatim}
class Eq a where
 (==) :: a -> a -> Bool
\end{verbatim}

A type is made a member or \texttt{instance} of a class by defining the signature function(s) for the type. For example, we might define \texttt{Bool} as an \texttt{instance} of \texttt{Eq} as follows:

\begin{verbatim}
instance Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
\end{verbatim}

Other types, such as the primitive types \texttt{Int} and \texttt{Char}, can also be defined as instances of the class. Comparison of primitive data types will often be implemented as primitive operations built into the computer hardware.

An instance declaration can also be declared with a context constraint, such as in the equality of lists below. We define equality of a list type in terms of equality of the element type.

\begin{verbatim}
instance Eq a => Eq [a] where
 [] == [] = True
 (x:xs) == (y:ys) = x == y && xs == ys
 _ == _ = False
\end{verbatim}

Above, the \texttt{==} on the left sides of the equations is the operation being defined for lists. The \texttt{x == y} comparison on the right side is the previously defined operation on elements of the lists. The \texttt{xs == ys} on the right side is a recursive call of the equality operation for lists.

Within the class \texttt{Eq}, the \texttt{(==)} function is overloaded. The definition of \texttt{(==)} given for the types of its actual operands is used in evaluation.

In the Haskell standard prelude, the class definition for \texttt{Eq} includes both the equality and inequality functions. They may also have \texttt{default} definitions as follows:

\begin{verbatim}
class Eq a where
 (==), (/=) :: a -> a -> Bool
 -- Minimal complete definition: (==) or (/=)
 x /= y = not (x == y)
 x == y = not (x /= y)
\end{verbatim}
In the case of class \texttt{Eq}, inequality is defined as the negation of equality and vice versa.

An instance declaration must \texttt{override} (i.e. redefine) at least one of these functions (in order to break the circular definition), but the other function may either be left with its default definition or overridden.

22.5 Type Class Laws

Of course, our expectation is that any operation (\texttt{==}) defined for an instance of \texttt{Eq} should implement an "equality" comparison. What does that mean?

In mathematics, we expect equality to be an \textit{equivalence relation}. That is, equality comparisons should have the following properties for all values \texttt{x}, \texttt{y}, and \texttt{z} in the type’s set.

- **Reflexivity**: \texttt{x == x} is \texttt{True}.
- **Symmetry**: \texttt{x == y} if and only if \texttt{y == x}.
- **Transitivity**: if \texttt{x == y} and \texttt{y == z}, then \texttt{x == z}.

In addition, \texttt{x /= y} is expected to be equivalent to \texttt{not (x == y)} as defined in the default method definition.

Thus class \texttt{Eq} has these \textit{type class laws} that every instance of the class should satisfy. The developer of the instance should ensure that the laws hold.

As in many circumstances, the reality of computing may differ a bit from the mathematical ideal. Consider Reflexivity. If \texttt{x} is infinite, then it may be impossible to implement \texttt{x == x}. Also, this property might not hold for floating point number representations.

22.6 Another Example Class \texttt{Visible}

TODO: Replace this example (from Thompson) with a better one?

We can define another example class \texttt{Visible}, which might denote types whose values can be displayed as strings. Method \texttt{toString} represents an element of the type as a \texttt{String}. Method \texttt{size} yields the size of the argument as an \texttt{Int}.

```haskell
class Visible a where
    toString :: a -> String
    size :: a -> Int
```

We can make various data types instances of this class:

```haskell
instance Visible Char where
    toString ch = [ch]
    size _ = 1
```
instance Visible Bool where
 toString True = "True"
 toString False = "False"
 size _ = 1

instance Visible a => Visible [a] where
 toString = concat . map toString
 size = foldr (*) 1 . map size

What type class laws should hold for Visible?

There are no constraints on the conversion to strings. However, size must return an Int, so the “size” of the input argument must be finite and bounded by the largest value in type Int.

22.7 Class Extension (Inheritance)

Haskell supports the concept of class extension. That is, a new class can be defined that inherits all the operations of another class and adds additional operations.

For example, we can derive an ordering class Ord from the class Eq, perhaps as follows. (The definition in the Prelude may differ from the following.)

class Eq a => Ord a where
 (<), (<=), (>), (>=) :: a -> a -> Bool
 max, min :: a -> a -> a
 -- Minimal complete definition: (<) or (>)
 x <= y = x < y || x == y
 x < y = y > x
 x >= y = x > y || x == y
 x > y = y < x
 max x y | x >= y = x
 | otherwise = y
 min x y | x <= y = x
 | otherwise = y

With the above, we define Ord as a subclass of Eq; Eq is a superclass of Ord.

The above default method definitions are circular: < is defined in terms of > and vice versa. So a complete definition of Ord requires that at least one of these be given an appropriate definition for the type. Method == must, of course, also be defined appropriately for superclass Eq.

What type class laws should apply to instances of Ord?

Mathematically, we expect an instance of class Ord to implement a total order on its type set. That is, given the comparison operator (i.e. binary relation) <=, then the following properties hold for all values x, y, and z in the type’s set.
- **Reflexivity**: $x \leq x$ is True.
- **Antisymmetry**: $x \leq y$ and $y \leq x$, then $x == y$.
- **Transitivity**: if $x \leq y$ and $y \leq z$, then $x \leq z$.
- **Trichotomy** (comparability, totality): $x \leq y$ or $y \leq x$

A relation that satisfies the first three properties above is a *partial order*. The fourth property requires that all values in the type’s set can be compared by \leq.

In addition to the above laws, we expect $==$ (and $/$) to satisfy the `Eq` type class laws and $<$, $>$, $>=$, max, and min to satisfy the properties (i.e. default method definitions) given in the class `Ord` declaration.

As an example, consider the function `isort'` (insertion sort), defined in a previous chapter. It uses class `Ord` to constrain the list argument to ordered data items.

```haskell
isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)
```

```haskell
insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
ninsert' x (y:ys)
  | x <= y = x:y:ys
  | otherwise = y : insert' x ys
```

22.8 Multiple Constraints

Haskell also permits classes to be constrained by two or more other classes.

Consider the problem of sorting a list and then displaying the results as a string:

```haskell
vSort :: (Ord a, Visible a) => [a] -> String
vSort = toString . isort'
```

To sort the elements, they need to be from an ordered type. To convert the results to a string, we need them to be from a `Visible` type.

The multiple constraints can be over two different parts of the signature of a function. Consider a program that displays the second components of tuples if the first component is equal to a given value:

```haskell
vLookupFirst :: (Eq a, Visible b) => [(a,b)] -> a -> String
vLookupFirst xs x = toString (lookupFirst xs x)
```

```haskell
lookupFirst :: Eq a => [(a,b)] -> a -> [b]
lookupFirst ws x = [ z | (y,z) <- ws, y == x ]
```

Multiple constraints can occur in an instance declaration, such as might be used in extending equality to cover pairs:


```
instance (Eq a, Eq b) => Eq (a, b) where
  (x, y) == (z, w) = x == z && y == w
```

Multiple constraints can also occur in the definition of a class, as might be the
case in definition of an ordered visible class.

```
class (Ord a, Visible a) => OrdVis a

vSort :: OrdVis a => [a] -> String
```

The case where a class extends two or more classes, as above for `OrdVis` is called
multiple inheritance.

Instances of class `OrdVis` must satisfy the type class laws for classes `Eq` and
`Visible`.

22.9 Built-In Haskell Classes

See Section 6.3 of the Haskell 2010 Language [Marlow 2011] for discussion of the
various classes in the Haskell Prelude library.

22.10 Comparison to Other Languages

Let’s compare Haskell concept of type class with the class concept in familiar
object-oriented languages such as Java and C++.

- In Haskell, a class is a collection of types. In Java and C++, class and
type are similar concepts.

 For example, Java’s static type system treats the collection of objects
defined with a `class` construct as a type. A `class` can be used to implement
a type. However, it is possible to implement classes whose instances can
behave in ways outside the discipline of the type.

- Haskell classes are similar in concept to Java and C++ abstract classes
except that Haskell classes have no data fields. (There is no multiple
inheritance from classes in Java, of course.)

- Haskell classes are similar in concept to Java interfaces. Haskell classes
can give default method definitions, a feature that was only added in Java
8 and beyond.

- Instances of Haskell classes are types, not objects. They are somewhat like
concrete Java or C++ classes that extend abstract classes or concrete Java
classes that implement Java interfaces.

- Haskell separates the definition of a type from the definition of the methods
associated with that type. A class in Java or C++ usually defines both a
data structure (the member variables) and the functions associated with
the structure (the methods). In Haskell, these definitions are separated.

• The methods defined by a Haskell class correspond to the instance methods
in Java or virtual functions in a C++ class. Each instance of a class provides
its own definition for each method; class defaults correspond to default
definitions for a virtual function in the base class. Of course, Haskell class
instances do not have implicit receiver object or mutable data fields.

• Methods of Haskell classes are bound statically at compile time, not
dynamically bound at runtime as in Java.

• C++ and Java attach identifying information to the runtime representation
of an object. In Haskell, such information is attached logically instead of
physically to values through the type system.

• Haskell does not support the C++ overloading style in which functions
with different types share a common name.

• The type of a Haskell object cannot be implicitly coerced; there is no
universal base class such as Java’s Object which values can be projected
into or out of.

• There is no access control (such as public or private class constituents)
built into the Haskell class system. Instead, the module system must be
used to hide or reveal components of a class. (In that sense, it is similar
to the object-oriented languages Component Pascal and to the systems
programming language Rust.)

Type classes first appeared in Haskell, but similar concepts have been imple-
mented in more recently designed languages.

• The imperative systems programming language Rust supports traits, a
limited form of type classes.

• The object-functional hybrid language Scala has implicit classes and pa-
rameters, which enable a type enrichment programming idiom similar to
type classes.

• The functional language PureScript supports Haskell-like type classes.

• The dependently typed functional language Idris supports interfaces, which
are, in some ways, a generalization of Haskell’s type classes.

• Functional JavaScript libraries such as Ramda have type class-like features

22.11 What Next?

This chapter motivated and explored the concepts of overloading, type classes,
and instances in Haskell and compared them to features in other languages.
The next chapter further explores the profound impact of type classes on Haskell.

22.12 Exercises

TODO

22.13 Acknowledgements

In Spring 2017, I adapted and revised this chapter from my previous notes on this topic. I based the previous notes, in part, on the presentations in:

- Section 5 of *A Gentle Introduction to Haskell Version 98* [Hudak 1999].

For new content on Haskell type class laws, I read the discussions of type class laws on the websites:

- Typeclassopedia [Yorgey 2011]
- StackOverflow
- Reddit

I also reviewed the mathematical definitions of equality, equivalence relations, and total orders on such sites as:

- Wolfram MathWorld
- Wikipedia

In Summer and Fall 2017, I continued to develop this work as Chapter 9, Overloading and Type Classes, of my 2017 Haskell-based programming languages textbook.

In Summer 2018, I divided the Overloading and Type Classes chapter into two chapters in the 2018 version of the textbook, now titled *Exploring Languages with Interpreters and Functional Programming*. Most of the existing content became Chapter 22, Overloading and Type Classes (this chapter). I moved the planned content on advanced type class topics (functors, monads) to a planned new chapter 23.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded LaTeX markup for the mathematical formulas and then translate the document to HTML, PDF, and other forms as needed.
22.14 References

22.15 Terms and Concepts

Polymorphism in Haskell (parametric polymorphism, overloading); Haskell type system concepts (type classes, overloading, instances, signatures, methods, default definitions, context constraints, class extension, inheritance, subclass, superclass, overriding, multiple inheritance, class laws) versus related Java/C++ type system concepts (abstract and concrete classes, objects, inheritance, interfaces); mathematical concepts (equivalence relation, reflexivity, symmetry, antisymmetry, transitivity, trichotomy, total and partial orders).