
Exploring Languages with Interpreters
and Functional Programming

Chapter 21

H. Conrad Cunningham

16 October 2018

Contents
21 Algebraic Data Types 2

21.1 Chapter Introduction . 2
21.2 Definition . 2

21.2.1 ADT confusion . 2
21.3 Haskell Algebraic Data Types . 3

21.3.1 Declaring data types . 3
21.3.2 Example type Color . 3
21.3.3 Deriving class instances 4
21.3.4 More example types . 5
21.3.5 Recursive types . 6

21.4 Error-handling with Maybe and Either 8
21.5 What Next? . 11
21.6 Exercises . 11
21.7 Acknowledgements . 15
21.8 References . 15
21.9 Terms and Concepts . 16

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires use of a
browser that supports the display of MathML. A good choice as of October 2018
is a recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

21 Algebraic Data Types

21.1 Chapter Introduction

The previous chapters have primarily used Haskell’s primitive types along with
tuples, lists, and functions.

<<This chapter introduces the definition and use of Haskell’s (user-defined)
algebraic data types, which enable us to conveniently leverage the power of the
type system to write safe programs. We extensively these in the remainder of
this textbook.

The Haskell source module for this chapter is in file AlgDataTypes.hs.

21.2 Definition

An algebraic data type is a type formed by combining other types, that is, it is a
composite data type. The data type is created by an algebra of operations of
two primary kinds:

• a sum operation that constructs values to have one variant among several
possible variants. These sum types are also called tagged, disjoint union,
or variant types.

The combining operation is the alternation operator, which denotes the
choice of one but not both between two alternatives.

• a product operation that combines several values (i.e. fields) together to
construct a single value. These are tuple and record types.

The combining operation is the Cartesian product from set theory.

We can combine sums and products recursively into arbitrarily large structures.

An enumerated type is a sum type in which the constructors take no arguments.
Each constructor corresponds to a single value.

21.2.1 ADT confusion

Although sometimes the acronym ADT is used for both, an algebraic data type
is a different concept from an abstract data type.

• We specify an algebraic data type with its syntax (i.e. structure)—with
rules on how to compose and decompose them.

• We specify an abstract data type with its semantics (i.e. meaning)—with
rules about how the operations behave in relation to one another.

2

AlgDataTypes.hs

The modules we build with abstract interfaces, contracts, and data ab-
straction, such as the Rational Arithmetic modules from Chapter 7, are
abstract data types.

Perhaps to add to the confusion, in functional programming we sometimes use
an algebraic data type to help define an abstract data type.

21.3 Haskell Algebraic Data Types

21.3.1 Declaring data types

In addition to the built-in data types we have discussed, Haskell also allows the
definition of new data types using declarations of the form:

data Datatype a1 a2 · · · an = Cnstr1 | Cnstr2 | · · · | Cnstrm

where:

• Datatype is the name of a new type constructor of arity n (n ≥ 0). As
with the built-in types, the name of the data type must begin with an
uppercase letter.

• a1 , a2 , · · · an are distinct type variables representing the n parameters
of the data type. These begin with lowercase letters (by convention at the
beginning of the alphabet).

• Cnstr1 , Cnstr2 , · · ·, Cnstrm are the m (m ≥ 1$) data constructors
that describe the ways in which the elements of the new data type are
constructed. These begin with uppercase letters.

21.3.2 Example type Color

For example, consider a new data type Color whose possible values are the
colors on the flag of the USA. The names of the data constructors (the color
constants in this case) must also begin with capital letters.

data Color = Red | White | Blue
deriving (Show, Eq)

Color is an example of an enumerated type, a sum type that consists of a
finite sequence of nullary (i.e. the arity—number of parameters—is zero) data
constructors.

We can use the type and data constructor names defined with data in declarations,
patterns, and expressions in the same way that the built-in types can be used.

isRed :: Color -> Bool
isRed Red = True
isRed _ = False

3

Data constructors can also have associated values. For example, the constructor
Grayscale below takes an integer value.

data Color' = Red' | Blue' | Grayscale Int
deriving (Show, Eq)

Constructor Grayscale implicitly defines a constructor function with the type.

21.3.3 Deriving class instances

The optional deriving clauses above are very useful. They declare that these
new types are automatically added as instances of the type classes listed.

Note: Chapter 22 explores the concepts of type class, instance, and overloading
in more depth.

In the above cases, Show and Eq enable objects of type Color to be converted to
a String and compared for equality, respectively.

The Haskell compiler derives the body of an instance syntactically from the data
type declaration. It can derive instances for classes Eq, Ord, Enum, Bounded,
Read, and Show.

The derived instances of Eq include the (==) and (/=) methods.

The derived instances of Ord also include the compare, (<), (<=), (>), (>=),
max, and min methods. The ordered comparison operators use the order of the
constructors given in the data statement, from smallest to largest, left to right.
These comparison operators are strict in both arguments.

Similarly, the Enum instance assigns integers to the constructors increasing from 0
at the left; Bounded assigns minBound {.haskell} to the leftmost and maxBound
to the rightmost.

Show enables the function show to convert the data type to a syntactically correct
Haskell expression consisting of only the constructor names, parentheses, and
spaces. Similarly, Read enables the function read to parse such a string into a
value of the data type.

For example, the data type Bool might be defined as:

data Bool = False | True
deriving (Ord, Show)

Thus False < True evaluates to True and False > True evaluates to False.
If x == False, then show x yields the string False.

4

21.3.4 More example types

Consider a data type Point that has a type parameter. The following defines a
polymorphic type; both of the values associated with the constructor Pt must
be of type a. Constructor Pt implicitly defines a constructor function of type
a -> a -> Point a.

data Point a = Pt a a
deriving (Show, Eq)

As another example, consider a polymorphic set data type that represents a set
as a list of values as follows. Note that the name Set is used both as the type
constructor and a data constructor. In general, do not use a symbol in multiple
ways. It is acceptable to double use only when the type has only one constructor.

data Set a = Set [a]
deriving (Show, Eq)

Now we can write a function makeSet to transform a list into a Set. This
function uses the function nub from the Data.List module to remove duplicates
from a list.

makeSet :: Eq a => [a] -> Set a
makeSet xs = Set (nub xs)

As we have seen previously, programmers can also define type synonyms. As in
user-defined types, synonyms may have parameters. For example, the following
might define a matrix of some polymorphic type as a list of lists of that type.

type Matrix a = [[a]]

We can also use special types to encode error conditions. For example, suppose
we want an integer division operation that returns an error message if there is
an attempt to divide by 0 and returns the quotient otherwise. We can define
and use a union type Result as follows:

data Result a = Ok a | Err String
deriving (Show, Eq)

divide :: Int -> Int -> Result Int
divide _ 0 = Err "Divide by zero"
divide x y = Ok (x `div` y)

Then we can use this operation in the definition of another function f that
returns the maximum Int value maxBound when a division by 0 occurs.

f :: Int -> Int -> Int
f x y = return (divide x y)

where return (Ok z) = z
return (Err s) = maxBound

5

The auxiliary function return can be avoided by using the Haskell case expres-
sion as follows:

f' x y =
case divide x y of

Ok z -> z
Err s -> maxBound

This case expression evaluates the expression divide x y, matches its result
against the patterns of the alternatives, and returns the right-hand-side of the
first matching patter.

Later in this chapter we discuss the Maybe and Either types, two polymorphic
types for handling errors defined in the Prelude.

21.3.5 Recursive types

Types can also be recursive.

For example, consider the user-defined type BinTree, which defines a binary
tree with values of a polymorphic type.

data BinTree a = Empty | Node (BinTree a) a (BinTree a)
deriving (Show, Eq)

This data type represents a binary tree with a value in each node. The tree is
either “empty” (denoted by Empty) or it is a “node” (denoted by Node) that
consists of a value of type a and “left” and “right” subtrees. Each of the subtrees
must themselves be objects of type BinTree.

Thus a binary tree is represented as a three-part “record” as shown in on the
left side of Figure 21-1. The left and right subtrees are represented as nested
binary trees. There are no explicit “pointers”.

Figure 21-1: Binary Tree BinTree

Consider a function flatten to return the list of the values in binary tree in the
order corresponding to a left-to-right in-order traversal. Thus expression

6

flatten (Node (Node Empty 3 Empty) 5
(Node (Node Empty 7 Empty) 1 Empty))

yields [3,5,7,1].

flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l v r) = flatten l ++ [v] ++ flatten r

The second leg of flatten requires two recursive calls. However, as long as the
input tree is finite, each recursive call receives a tree that is simpler (e.g. shorter)
than the input. Thus all recursions eventually terminate when flatten is called
with an Empty tree.

Function flatten can be rendered more efficiently using an accumulating pa-
rameter and cons as in the following:

flatten' :: BinTree a -> [a]
flatten' t = inorder t []

where inorder Empty xs = xs
inorder (Node l v r) xs =

inorder l (v : inorder r xs)

Auxiliary function inorder builds up the list of values from the right using cons.

To extend the example further, consider a function treeFold that folds an
associative operation op with identity element i through a left-to-right in-order
traversal of the tree.

treeFold :: (a -> a -> a) -> a -> BinTree a -> a
treeFold op i Empty = i
treeFold op i (Node l v r) = op (op (treeFold op i l) v)

(treeFold op i r)

Now let’s consider a slightly different formulation of a binary tree: a tree in
which values are only stored at the leaves.

data Tree a = Leaf a | Tree a :^: Tree a
deriving (Show, Eq)

This definition introduces the constructor function name Leaf as the constructor
for leaves and the infix construction operator “:^:” as the constructor for internal
nodes of the tree. (A constructor operator symbol must begin with a colon.)

These constructors allow such trees to be defined conveniently. For example, the
tree

((Leaf 1 :^: Leaf 2) :^: (Leaf 3 :^: Leaf 4))

generates a complete binary tree with height 3 and the integers 1, 2, 3, and 4 at
the leaves.

7

Suppose we want a function fringe, similar to function flatten above, that
displays the leaves in a left-to-right order. We can write this as:

fringe :: Tree a -> [a]
fringe (Leaf v) = [v]
fringe (l :^: r) = fringe l ++ fringe r

As with flatten and flatten' above, function fringe can also be rendered
more efficiently using an accumulating parameter as in the following:

fringe' :: Tree a -> [a]
fringe' t = leaves t []

where leaves (Leaf v) = ((:) v)
leaves (l :^: r) = leaves l . leaves r

Auxiliary function leaves builds up the list of leaves from the right using cons.

21.4 Error-handling with Maybe and Either

Before we examine Maybe and Either, let’s consider a use case.

An association list is a list of pairs in which the first component is some key
(e.g. a string) and the second component is the value associated with that key.
It is a simple form of a map or dictionary data structure.

Suppose we have an association list that maps the name of a student (a key) to
the name of the student’s academic advisor (a value). The following function
lookup' carries out the search recursively.

lookup' :: String -> [(String,String)] -> String
lookup' key ((x,y):xys)

| key == x = y
| otherwise = lookup' key xys

But what do we do when the key is not in the list (e.g. the list is empty)? How
do we define a leg for lookup' key [] ?

1. Leave the function undefined for that pattern?

In this case, evaluation will halt with a “non-exhaustive pattern” error
message.

2. Put in an explicit error call with a custom error message?

3. Return some default value of the advisor such as "NONE"?

4. Return a null reference?

The first two approaches either halt the entire program or require use of the
exception-handling mechanism. However, in any language, both abnormal
termination and exceptions should be avoided except in cases in which the

8

program is unable to continue. The lack of an assignment of a student to an
advisor is likely not such an extraordinary situation.

Exceptions break referential transparency and, hence, negate many of the ad-
vantages of purely functional languages such as Haskell. In addition, Haskell
programs can only catch exceptions in IO programs (i.e. the outer layers that
handle input/output).

The third approach only works when there is some value that is not valid. This
is not a very general approach.

The fourth approach, which is not available in Haskell, can be an especially unsafe
programming practice. British computing scientist Tony Hoare, who introduced
the null reference into the Algol type system in the mid-1960s, calls that his
“billion dollar mistake” because it “has led to innumerable errors, vulnerabilities,
and system crashes”.

What is a safer, more general approach than these?

Haskell includes the union type Maybe (from the Prelude and Data.Maybe) which
can be used to handle such cases.

data Maybe a = Nothing | Just a
deriving (Eq, Ord)

The Maybe algebraic data type encapsulates an optional value. A value of type
Maybe a either contains a value of type a (represented by Just a) or it is empty
(represented by Nothing).

The Maybe type is a good way to handle errors or exceptional cases without
resorting to an error call.

Now we can define a general version of lookup' using a Maybe return type. (This
is essentially function lookup from the Prelude.)

lookup'' :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup'' key [] = Nothing
lookup'' key ((x,y):xys)

| key == x = Just y
| otherwise = lookup'' key xys

Suppose advisorList is an association list pairing students with their advisors
and defaultAdvisor is the advisor the student should consult if no advisor is
officially assigned. We can look up the advisor with a call to lookup and then
pattern match on the Maybe value returned. (Here we use a case expression.)

whoIsAdvisor :: String -> String
whoIsAdvisor std =

case lookup std advisorList of
Nothing -> defaultAdvisor
Just prof -> prof

9

The whoIsAdvisor function just returns a default value in place of Nothing.
The function

fromMaybe :: a -> Maybe a -> a

supported by the Data.Maybe library has the same effect. Thus we can rewrite
whoIsAdvisor as follows:

whoIsAdvisor' std =
fromMaybe defaultAdvisor $ lookup std advisorList

Alternatively, we could use Data.Maybe functions such as:

isJust :: Maybe a -> Bool
isNothing :: Maybe a -> Bool
fromJust :: Maybe a -> a -- error if Nothing

This allows us to rewrite whoIsAdvisor as follows:

whoIsAdvisor'' std =
let ad = lookup std advisorList
in if isJust ad then fromJust ad else defaultAdvisor

If we need more fine-grained error messages, then we can use the union type
Either defined as follows:

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

The Either a b type represents values with two possibilities: a Left a or
Right b. By convention, a Left constructor usually contains an error message
and a Right constructor a correct value.

As with fromMaybe, we can use similar fromRight and fromLeft functions from
the Data.Either library to extract the Right or Left values or to return a
default value when the value is represented by the other constructor.

fromLeft :: a -> Either a b -> a
fromRight :: b -> Either a b -> b

Library module Data.Either also includes functions to query for the presence
of the two constructors.

isLeft :: Either a b -> Bool
isRight :: Either a b -> Bool

Most recently designed languages include a maybe or option type. For example,
Java 8 added the final class Optional<T>. Scala supports the Option[T] case
class hierarchy, and Rust includes the Option<T> enum (algebraic data type).
The functional languages Idris, Elm, and PureScript all have Haskell-like Maybe
algebraic data types.

When programming in an object-oriented language that does not provide an
option/maybe type, a programmer can often use the Null Object design pattern

10

[Wikipedia 2018f] to achieve a similar result. Instead of returning a null reference
to denote the absence of a valid result, the function can return an object that
implements the expected interface but which “does nothing”—at least nothing
harmful or misleading.

21.5 What Next?

This chapter added Haskell’s algebraic data types to our programming toolbox.
The next chapter adds type classes and overloading to the toolbox.

21.6 Exercises

1. For trees of type Tree, implement a tree-folding function similar to
treeFold.

2. For trees of type BinTree, implement a version of treeFold that uses an
accumulating parameter. (Hint: foldl.)

3. In a binary search tree all values in the left subtree of a node are less than
the value at the node and all values in the right subtree are greater than
the value at the node.

Given binary search trees of type BinTree, implement the following Haskell
functions:

a. makeTree that takes a list and returns a perfectly balanced (i.e. mini-
mal height) BinTree such that flatten (makeTree xs) = sort xs.
Prelude function sort returns its argument rearranged into ascending
order.

b. insertTree that takes an element and a BinTree and returns the
BinTree with the element inserted at an appropriate position.

c. elemTree that takes an element and a BinTree and returns True if
the element is in the tree and False otherwise.

d. heightTree that takes a BinTree and returns its height. Assume
that height means the number of levels in the tree. (A tree consisting
of exactly one node has a height of 1.)

e. mirrorTree that takes a BinTree and returns its mirror image. That
is, it takes a tree and returns the tree with the left and right subtrees
of every node swapped.

f. mapTree that takes a function and a BinTree and returns the BinTree
of the same shape except each node’s value is computed by applying
the function to the corresponding value in the input tree.

11

g. showTree that takes a BinTree and displays the tree in a parenthe-
sized, left-to-right, in-order traversal form. (That is, the traversal of
a tree is enclosed in a pair of parentheses, with the traversal of the
left subtree followed by the traversal of the right subtree.)

Extend the package to support both insertion and deletion of elements.
Keep the tree balanced using a technique such the AVL balancing algorithm.

4. Implement the package of functions described in the previous exercise for
the data type Tree.

5. Each node of a general (i.e. multiway) tree consists of a label and a list of
(zero or more) subtrees (each a general tree). We can define a general tree
data type in Haskell as follows:

data Gtree a = Node a [Gtree a]

For example, tree (Node 0 []) consists of a single node with label 0;
a more complex tree Node 0 [Node 1 [], Node 2 [], Node 3 []]
consists of root node with three single-node subtrees.

Implement a “map” function for general trees, i.e. write Haskell function

mapGtree :: (a -> b) -> Gtree a -> Gtree b

that takes a function and a Gtree and returns the Gtree of the same
shape such that each label is generated by applying the function to the
corresponding label in the input tree.

6. We can introduce a new Haskell type for the natural numbers (i.e. nonneg-
ative integers) with the statement

data Nat = Zero | Succ Nat

where the constructor Zero represents the value 0 and constructor Succ
represents the “successor function” from mathematics. Thus (Succ Zero)
denotes 1, (Succ (Succ Zero)) denotes 2, and so forth. Implement the
following Haskell functions.

a. intToNat that takes a nonnegative Int and returns the equivalent
Nat, for example, intToNat 2 returns Succ (Succ Zero).

b. natToInt that takes a Nat and returns the equivalent value of type
Int, for example, natToInt Succ (Succ Zero) returns 2.

c. addNat that takes two Nat values and returns their sum as a Nat.
This function cannot use integer addition.

d. mulNat that takes two Nat values and returns their product as a Nat.
This function cannot use integer multiplication or addition.

e. compNat that takes two Nat values and returns the value -1 if the first
is less than the second, 0 if they are equal, and 1 if the first is greater

12

than the second. This function cannot use the integer comparison
operators.

7. Consider the following Haskell data type for representing sequences
(i.e. lists):

data Seq a = Nil | Att (Seq a) a

Nil represents the empty sequence. Att xz y represents the sequence in
which last element y is “attached” at the right end of the initial sequence
xz.

Note that Att is similar to the ordinary “cons” (:) for Haskell lists ex-
cept that elements are attached at the opposite end of the sequences.
(Att (Att (Att Nil 1) 2) 3) represents the same sequence as the ordi-
nary list (1:(2:(3:[]))).

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists.

a. lastSeq takes a nonempty Seq and returns its last (i.e. rightmost)
element.

b. initialSeq takes a nonempty Seq and returns its initial sequence
(i.e. sequence remaining after the last element removed).

c. lenSeq takes a Seq and returns the number of elements that it
contains.

d. headSeq takes a nonempty Seq and returns its head (i.e. leftmost)
element.

e. tailSeq takes a nonempty Seq and returns the Seq remaining after
the head element is removed.

f. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

g. appSeq takes two arguments of type Seq and returns a Seq with the
second argument appended after the first.

h. revSeq takes a Seq and returns the Seq with the same elements in
reverse order.

i. mapSeq takes a function and a Seq and returns the Seq resulting from
applying the function to each element of the sequence in turn.

j. filterSeq that takes a predicate and a Seq and returns the Seq
containing only those elements that satisfy the predicate.

k. listToSeq takes an ordinary Haskell list and returns the Seq with the
same values in the same order (e.g. headSeq (listToSeq xs) = head xs
for nonempty xs.)

13

l. seqToList takes a Seq and returns the ordinary Haskell list with the
same values in the same order (e.g. head (seqToList xz) = headSeq xz
for nonempty xz.)

8. Consider the following Haskell data type for representing sequences
(i.e. lists):

data Seq a = Nil | Unit a | Cat (Seq a) (Seq a)

The constructor Nil represents the empty sequence; Unit represents a
single-element sequence; and Cat represents the “concatenation” (i.e. ap-
pend) of its two arguments, the second argument appended after the
first.

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists. (Do not convert back and forth to lists.)

a. toSeq that takes a list and returns a corresponding Seq that is
balanced.

b. fromSeq that takes a Seq and returns the corresponding list.

c. appSeq that takes two arguments of type Seq and returns a Seq with
the second argument appended after the first.

d. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

e. lenSeq that takes a Seq and returns the number of elements that it
contains.

f. revSeq that takes a Seq and returns a Seq with the same elements
in reverse order.

g. headSeq that takes a nonempty Seq and returns its head (i.e. leftmost
or front) element. (Be careful!)

h. tailSeq that takes a nonempty Seq and returns the Seq remaining
after the head is removed.

i. normSeq that takes a Seq and returns a Seq with unnecessary embed-
ded Nil values removed. (For example, normSeq (Cat (Cat Nil (Unit 1)) Nil)
returns (Unit 1).)

j. eqSeq that takes two Seq “trees” and returns True if the sequences
of values are equal and returns False otherwise. Note that two Seq
“trees” may be structurally different yet represent the same sequence
of values.

For example, (Cat Nil (Unit 1)) and (Cat (Unit 1) Nil) have
the same sequence of values (i.e. [1]). But (Cat (Unit 1) (Unit 2))

14

and (Cat (Unit 2) (Unit 1)) do not represent the same sequence
of values (i.e. [1,2] and [2,1], respectively).

Also (Cat (Cat (Unit 1) (Unit 2)) (Unit 3)) has the same se-
quence of values as (Cat (Cat (Unit 1) (Unit 2)) (Unit 3)) (i.e.
[1,2,3]).

In general what are the advantages and disadvantages of representing lists
this way?

21.7 Acknowledgements

In Summer 2016, I adapted and revised much of this work from the following
sources:

• chapter 8 of my Notes on Functional Programming with Haskell [Cunning-
ham 2014] which is influenced by [Bird 1988]

• my Functional Data Structures (Scala) [Cunningham 2016] which is based,
in part, on chapter 3 of the book Functional Programming in Scala [Chiu-
sano 2015]

In 2017, I continued to develop this work as Chapter 8, Algebraic Data Types, of
my 2017 Haskell-based programming languages textbook. I added discussion of
the Maybe and Either types. For this work, I examined the Haskell Data.Maybe
and Data.Either documentation and the Wikipedia article on “Option Type”
[Wikipedia 2018f].

In Summer 2018, I revised this as Chapter 21, Algebraic Data Types, in the
2018 version of the textbook, now titled Exploring Languages with Interpreters
and Functional Programming.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

21.8 References

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Bird 1998]: Richard Bird. Introduction to FunctionalProgramming using
Haskell, Second Edition, Prentice Hall, 1998.

[Bird 2015]: Richard Bird. Thinking Functionally with Haskell, Second Edition,
Cambridge University Press, 2015.

[Chiusano 2015]: Paul Chiusano and Runar Bjarnason, Functional Program-
ming in Scala, Manning, 2015.

15

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Cunningham 2016]: H. Conrad Cunningham, Functional Data Structures
(Scala), 2016. (Lecture notes based, in part, on chapter 3 of [Chiusano
2015].)

[Wikipedia 2018f]: Wikipedia* articles on “Algebraic Data Type”, “Abstract
Data Type”, “Option Type”, and “Null Object Pattern”.

21.9 Terms and Concepts

Types, algebraic data types (composite), sum (tagged, disjoint union, variant,
enumerated), product (tuple, record), arity, nullary, recursive types, algebraic
data types versus abstract data types, syntax, semantics, pattern matching, null
reference, safe error handling, Maybe and Either “option” types, Null Object
design pattern, association list (map, dictionary), key, value.

16

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci658/notes/FPS03/FunctionalDS.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/FPS03/FunctionalDS.html

	Algebraic Data Types
	Chapter Introduction
	Definition
	ADT confusion

	Haskell Algebraic Data Types
	Declaring data types
	Example type Color
	Deriving class instances
	More example types
	Recursive types

	Error-handling with Maybe and Either
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

