Exploring Languages with Interpreters
and Functional Programming
Chapter 21

H. Conrad Cunningham

21 July 2018

Contents

21 Algebraic Data Types 2
 21.1 Chapter Introduction ... 2
 21.2 Definition .. 2
 21.2.1 ADT confusion ... 2
 21.3 Haskell Algebraic Data Types 3
 21.3.1 Declaring data types 3
 21.3.2 Example type Color 3
 21.3.3 Deriving class instances 4
 21.3.4 More example types 4
 21.3.5 Recursive types .. 6
 21.4 Error-handling with Maybe and Either 8
 21.5 What Next? .. 10
 21.6 Exercises ... 11
 21.7 Acknowledgements ... 14
 21.8 References .. 15
 21.9 Terms and Concepts .. 15

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of July 2018 is a recent
version of Firefox from Mozilla.
21 Algebraic Data Types

21.1 Chapter Introduction

TODO

The Haskell source module for this chapter is in file `AlgDataTypes.hs`.

21.2 Definition

An algebraic data type is a type formed by combining other types, that is, it is a composite data type. The data type is created by an algebra of operations of two primary kinds:

- a sum operation that constructs values to have one variant among several possible variants. These sum types are also called tagged, disjoint union, or variant types.

 The combining operation is the alternation operator, which denotes the choice of one but not both between two alternatives.

- a product operation that combines several values (i.e. fields) together to construct a single value. These are tuple and record types.

 The combining operation is the Cartesian product from set theory.

We can combine sums and products recursively into arbitrarily large structures.

An enumerated type is a sum type in which the constructors take no arguments. Each constructor corresponds to a single value.

21.2.1 ADT confusion

Although sometimes the acronym ADT is used for both, an algebraic data type is a different concept from an abstract data type.

- We specify an algebraic data type with its syntax (i.e. structure)—with rules on how to compose and decompose them.

- We specify an abstract data type with its semantics (i.e. meaning)—with rules about how the operations behave in relation to one another.

 The modules we build with abstract interfaces, contracts, and data abstraction, such as the Rational Arithmetic modules from Chapter 7, are abstract data types.

Perhaps to add to the confusion, in functional programming we sometimes use an algebraic data type to help define an abstract data type.
21.3 Haskell Algebraic Data Types

21.3.1 Declaring data types

In addition to the built-in data types we have discussed, Haskell also allows the definition of new data types using declarations of the form:

\[
\text{data Datatype } a_1 \ a_2 \ \cdots \ a_n = \text{Constr}_1 \ \mid \ \text{Constr}_2 \ \mid \ \cdots \mid \ \text{Constr}_m
\]

where:

- **Datatype** is the name of a new type constructor of *arity* *n* (*n* ≥ 0). As with the built-in types, the name of the data type must begin with an uppercase letter.
- *a_1, a_2, \cdots a_n* are distinct type variables representing the *n* parameters of the data type. These begin with lowercase letters (by convention at the beginning of the alphabet).
- *Constr_1, Constr_2, \cdots, Constr_m* are the *m* (*m* ≥ 1) data constructors that describe the ways in which the elements of the new data type are constructed. These begin with uppercase letters.

21.3.2 Example type Color

For example, consider a new data type *Color* whose possible values are the colors on the flag of the USA. The names of the data constructors (the color constants in this case) must also begin with capital letters.

\[
\text{data Color} = \text{Red} \mid \text{White} \mid \text{Blue}
\]

\[\text{deriving (Show, Eq)}\]

Color is an example of an *enumerated type*, a *sum* type that consists of a finite sequence of *nullary* (i.e. the arity—number of parameters—is zero) data constructors.

We can use the type and data constructor names defined with \texttt{data} in declarations, patterns, and expressions in the same way that the built-in types can be used.

\[
isRed :: \text{Color} \rightarrow \text{Bool}
isRed \text{ Red} = \text{True}
isRed _ = \text{False}
\]

Data constructors can also have associated values. For example, the constructor *Grayscale* below takes an integer value.

\[
\text{data Color'} = \text{Red'} \mid \text{Blue'} \mid \text{Grayscale Int}
\]

\[\text{deriving (Show, Eq)}\]

Constructor *Grayscale* implicitly defines a constructor function with the type.
21.3.3 Deriving class instances

The optional deriving clauses above are very useful. They declare that these new types are automatically added as instances of the classes listed. In the above cases, Show and Eq enable objects of type Color to be converted to a String and compared for equality, respectively.

The Haskell compiler derives the body of an instance syntactically from the data type declaration. It can derive instances for classes Eq, Ord, Enum, Bounded, Read, and Show.

The derived instances of Eq include the (==) and (/=) methods. The derived instances of Ord also include the compare, (<), (<=), (>), (>=), max, and min methods. The ordered comparison operators use the order of the constructors given in the data statement, from smallest to largest, left to right. These comparison operators are strict in both arguments.

Similarly, the Enum instance assigns integers to the constructors increasing from 0 at the left; Bounded assigns minBound to the leftmost and maxBound to the rightmost.

Show enables the function show to convert the data type to a syntactically correct Haskell expression consisting of only the constructor names, parentheses, and spaces. Similarly, Read enables the function read to parse such a string into a value of the data type.

For example, the data type Bool might be defined as:

```haskell
data Bool = False | True
    deriving (Ord, Show)
```

Thus False < True evaluates to True and False > True evaluates to False. If $x \equiv False$, then show x yields the string False.

21.3.4 More example types

Consider a data type Point that has a type parameter. The following defines a polymorphic type; both of the values associated with the constructor Pt must be of type a. Constructor Pt implicitly defines a constructor function of type a -> a -> Point a.

```haskell
data Point a = Pt a a
    deriving (Show, Eq)
```

As another example, consider a polymorphic set data type that represents a set as a list of values as follows. Note that the name Set is used both as the type constructor and a data constructor. In general, do not use a symbol in multiple ways. It is acceptable to double use only when the type has only one constructor.
data Set a = Set [a]
 deriving (Show, Eq)

Now we can write a function `makeSet` to transform a list into a `Set`. This function uses the function `nub` from the `Data.List` module to remove duplicates from a list.

 makeSet :: Eq a => [a] -> Set a
 makeSet xs = Set (nub xs)

As we have seen previously, programmers can also define type synonyms. As in user-defined types, synonyms may have parameters. For example, the following might define a matrix of some polymorphic type as a list of lists of that type.

 type Matrix a = [[a]]

We can also use special types to encode error conditions. For example, suppose we want an integer division operation that returns an error message if there is an attempt to divide by 0 and returns the quotient otherwise. We can define and use a union type `Result` as follows:

 data Result a = Ok a | Err String
 deriving (Show, Eq)

 divide :: Int -> Int -> Result Int
 divide _ 0 = Err "Divide by zero"
 divide x y = Ok (x `div` y)

Then we can use this operation in the definition of another function `f` that returns the maximum `Int` value `maxBound` when a division by 0 occurs.

 f :: Int -> Int -> Int
 f x y = return (divide x y)
 where return (Ok z) = z
 return (Err s) = maxBound

The auxiliary function `return` can be avoided by using the Haskell `case` expression as follows:

 f' x y =
 case divide x y of
 Ok z -> z
 Err s -> maxBound

This case expression evaluates the expression `divide x y`, matches its result against the patterns of the alternatives, and returns the right-hand-side of the first matching pattern.

Later in this chapter we discuss the `Maybe` and `Either` types, two polymorphic types for handling errors defined in the Prelude.
21.3.5 Recursive types

Types can also be recursive.

For example, consider the user-defined type `BinTree`, which defines a binary tree with values of a polymorphic type.

```haskell
data BinTree a = Empty | Node (BinTree a) a (BinTree a)
deriving (Show, Eq)
```

This data type represents a binary tree with a value in each node. The tree is either “empty” (denoted by `Empty`) or it is a “node” (denoted by `Node`) that consists of a value of type `a` and “left” and “right” subtrees. Each of the subtrees must themselves be objects of type `BinTree`.

Thus a binary tree is represented as a three-part “record” in which the left and right subtrees are represented as nested binary trees. There are no explicit “pointers”.

TODO: Draw tree with Graphviz

Consider a function `flatten` to return the list of the values in binary tree in the order corresponding to a left-to-right in-order traversal. Thus expression

```haskell
flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l v r) = flatten l ++ [v] ++ flatten r
```

yields `[3, 5, 7, 1]`.

```haskell
flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l v r) = flatten l ++ [v] ++ flatten r
```

The second leg of `flatten` requires two recursive calls. However, as long as the input tree is finite, each recursive call receives a tree that is simpler (e.g. shorter)
than the input. Thus all recursions eventually terminate when \texttt{flatten} is called with an \texttt{Empty} tree.

Function \texttt{flatten} can be rendered more efficiently using an accumulating parameter and cons as in the following:

\begin{verbatim}
flatten' :: BinTree a -> [a]
flatten' t = inorder t []
 where inorder Empty xs = xs
 inorder (Node l v r) xs =
 inorder l (v : inorder r xs)
\end{verbatim}

Auxiliary function \texttt{inorder} builds up the list of values from the right using cons.

To extend the example further, consider a function \texttt{treeFold} that folds an associative operation \texttt{op} with identity element \texttt{i} through a left-to-right in-order traversal of the tree.

\begin{verbatim}
treeFold :: (a -> a -> a) -> a -> BinTree a -> a
treeFold op i Empty = i
treeFold op i (Node l v r) = op (op (treeFold op i l) v) (treeFold op i r)
\end{verbatim}

Now let’s consider a slightly different formulation of a binary tree: a tree in which values are only stored at the leaves.

\begin{verbatim}
data Tree a = Leaf a | Tree a :+: Tree a
 deriving (Show, Eq)
\end{verbatim}

This definition introduces the constructor function name \texttt{Leaf} as the constructor for leaves and the infix construction operator “\texttt{ :+: }” as the constructor for internal nodes of the tree. (A constructor operator symbol must begin with a colon.)

These constructors allow such trees to be defined conveniently. For example, the tree

\begin{verbatim}
((Leaf 1 :+: Leaf 2) :+: (Leaf 3 :+: Leaf 4))
\end{verbatim}

generates a complete binary tree with height 3 and the integers 1, 2, 3, and 4 at the leaves.

Suppose we want a function \texttt{fringe}, similar to function \texttt{flatten} above, that displays the leaves in a left-to-right order. We can write this as:

\begin{verbatim}
fringe :: Tree a -> [a]
fringe (Leaf v) = [v]
fringe (l :+: r) = fringe l ++ fringe r
\end{verbatim}

As with \texttt{flatten} and \texttt{flatten'} above, function \texttt{fringe} can also be rendered more efficiently using an accumulating parameter as in the following:
Auxiliary function \(\text{leaves} \) builds up the list of leaves from the right using cons.

21.4 Error-handling with \texttt{Maybe} and \texttt{Either}

Before we examine \texttt{Maybe} and \texttt{Either}, let's consider a use case.

An \textit{association list} is a list of pairs in which the first component is some \textit{key} (e.g. a string) and the second component is the \textit{value} associated with that key. It is a simple form of a \textit{map} or \textit{dictionary} data structure.

Suppose we have an association list that maps the name of a student (a key) to the name of the student’s academic advisor (a value). The following function \texttt{lookup'} carries out the search recursively.

\[
\texttt{lookup'} :: \text{String} -> [(\text{String, String})] -> \text{String} \\
\texttt{lookup'} \text{ key} ((x,y)::xys) \\
| \text{key} == x \Rightarrow y \\
| \text{otherwise} = \texttt{lookup'} \text{ key} xys
\]

But what do we do when the key is not in the list (e.g. the list is empty)? How do we define a leg for \texttt{lookup'} \texttt{key} []?

1. Leave the function undefined for that pattern?

 In this case, evaluation will halt with a “non-exhaustive pattern” error message.

2. Put in an explicit \texttt{error} call with a custom error message?

3. Return some default value of the advisor such as "NONE"?

4. Return a null reference?

The first two approaches either halt the entire program or require use of the exception-handling mechanism. However, in any language, both abnormal termination and exceptions should be avoided except in cases in which the program is unable to continue. The lack of an assignment of a student to an advisor is likely not such an extraordinary situation.

Exceptions break referential transparency and, hence, negate many of the advantages of purely functional languages such as Haskell. In addition, Haskell programs can only catch exceptions in the outer layers that handle input/output.

The third approach only works when there is some value that is not valid. This is not a very general approach.
The fourth approach, which is not available in Haskell, can be an especially unsafe programming practice. British computing scientist Tony Hoare, who introduced the null reference into the Algol type system in the mid-1960s, calls that his “billion dollar mistake” because it “has led to innumerable errors, vulnerabilities, and system crashes”.

What is a safer, more general approach than these?

Haskell includes the union type `Maybe` (from the Prelude and `Data.Maybe`) which can be used to handle such cases.

```haskell
data Maybe a = Nothing | Just a
  deriving (Eq, Ord)
```

The `Maybe` algebraic data type encapsulates an optional value. A value of type `Maybe a` either contains a value of type `a` (represented by `Just a`) or it is empty (represented by `Nothing`).

The `Maybe` type is a good way to handle errors or exceptional cases without resorting to an `error` call.

Now we can define a general version of `lookup` using a `Maybe` return type. (This is essentially function `lookup` from the Prelude.)

```haskell
lookup'' :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup'' key [] = Nothing
lookup'' key ((x,y):xys)
  | key == x   = Just y
  | otherwise = lookup'' key xys
```

Suppose `advisorList` is an association list pairing students with their advisors and `defaultAdvisor` is the advisor the student should consult if no advisor is officially assigned. We can look up the advisor with a call to `lookup` and then pattern match on the `Maybe` value returned. (Here we use a `case` expression.)

```haskell
whoIsAdvisor :: String -> String
whoIsAdvisor std =
  case lookup std advisorList of
    Nothing -> defaultAdvisor
    Just prof -> prof
```

The `whoIsAdvisor` function just returns a default value in place of `Nothing`. The function

```haskell
fromMaybe :: a -> Maybe a -> a
```

supported by the `Data.Maybe` library has the same effect. Thus we can rewrite `whoIsAdvisor` as follows:

```haskell
whoIsAdvisor' std =
  fromMaybe defaultAdvisor $ lookup std advisorList
```

Alternatively, we could use `Data.Maybe` functions such as:
isJust :: Maybe a -> Bool
isNothing :: Maybe a -> Bool
fromJust :: Maybe a -> a -- error if Nothing

This allows us to rewrite whoIsAdvisor as follows:

 whoIsAdvisor std =
 let ad = lookup std advisorList
 in if isJust ad then fromJust ad else defaultAdvisor

If we need more fine-grained error messages, then we can use the union type Either defined as follows:

 data Either a b = Left a | Right b
 deriving (Eq, Ord, Read, Show)

The Either a b type represents values with two possibilities: a Left a or Right b. By convention, a Left constructor usually contains an error message and a Right constructor a correct value.

As with fromMaybe, we can use similar fromRight and fromLeft functions from the Data.Either library to extract the Right or Left values or to return a default value when the value is represented by the other constructor.

 fromLeft :: a -> Either a b -> a
 fromRight :: b -> Either a b -> b

Library module Data.Either also includes functions to query for the presence of the two constructors.

 isLeft :: Either a b -> Bool
 isRight :: Either a b -> Bool

Most recently designed languages include a maybe or option type. For example, Java 8 added the final class Optional<T>. Scala supports the Option[T] case class hierarchy, and Rust includes the Option<T> enum (algebraic data type). The functional languages Idris, Elm, and PureScript all have Haskell-like Maybe algebraic data types.

When programming in an object-oriented language that does not provide an option/maybe type, a programmer can often use the Null Object design pattern [Wikipedia 2018f] to achieve a similar result. Instead of returning a null reference to denote the absence of a valid result, the function can return an object that implements the expected interface but which “does nothing”—at least nothing harmful.

21.5 What Next?

TODO
21.6 Exercises

1. For trees of type `Tree`, implement a tree-folding function similar to `treeFold`.

2. For trees of type `BinTree`, implement a version of `treeFold` that uses an accumulating parameter. (Hint: `foldl`.)

3. In a binary search tree all values in the left subtree of a node are less than the value at the node and all values in the right subtree are greater than the value at the node.

 Given binary search trees of type `BinTree`, implement the following Haskell functions:

 a. `makeTree` that takes a list and returns a perfectly balanced (i.e. minimal height) `BinTree` such that `flatten (makeTree xs) = sort xs`. Prelude function `sort` returns its argument rearranged into ascending order.

 b. `insertTree` that takes an element and a `BinTree` and returns the `BinTree` with the element inserted at an appropriate position.

 c. `elemTree` that takes an element and a `BinTree` and returns `True` if the element is in the tree and `False` otherwise.

 d. `heightTree` that takes a `BinTree` and returns its height. Assume that height means the number of levels in the tree. (A tree consisting of exactly one node has a height of 1.)

 e. `mirrorTree` that takes a `BinTree` and returns its mirror image. That is, it takes a tree and returns the tree with the left and right subtrees of every node swapped.

 f. `mapTree` that takes a function and a `BinTree` and returns the `BinTree` of the same shape except each node’s value is computed by applying the function to the corresponding value in the input tree.

 g. `showTree` that takes a `BinTree` and displays the tree in a parenthesized, left-to-right, in-order traversal form. (That is, the traversal of a tree is enclosed in a pair of parentheses, with the traversal of the left subtree followed by the traversal of the right subtree.)

 Extend the package to support both insertion and deletion of elements. Keep the tree balanced using a technique such the AVL balancing algorithm.

4. Implement the package of functions described in the previous exercise for the data type `Tree`.

5. Each node of a general (i.e. multiway) tree consists of a label and a list of (zero or more) subtrees (each a general tree). We can define a general tree data type in Haskell as follows:
\textit{data} \texttt{Gtree} \ a \ = \ \texttt{Node} \ a \ [\texttt{Gtree} \ a] \\
For example, tree \((\texttt{Node} \ 0 \ [\])\) consists of a single node with label 0; a
more complex tree, \((\texttt{Node} \ a \ [\texttt{Gtree} \ b] \ [\texttt{Gtree} \ c])\), consists of root node with three single-node subtrees.

Implement a “map” function for general trees, i.e. write Haskell function

\textit{mapGtree} :: (a \to b) \to \texttt{Gtree} \ a \to \texttt{Gtree} \ b

that takes a function and a \texttt{Gtree} and returns the \texttt{Gtree} of the same shape such that each label is generated by applying the function to the corresponding label in the input tree.

6. We can introduce a new Haskell type for the natural numbers (i.e. nonnegative integers) with the statement

\textit{data} \texttt{Nat} \ = \ \texttt{Zero} \ | \ \texttt{Succ} \ \texttt{Nat} \\
where the constructor \texttt{Zero} represents the value 0 and constructor \texttt{Succ} represents the “successor function” from mathematics. Thus \((\texttt{Succ} \ \texttt{Zero})\) denotes 1, \((\texttt{Succ} \ (\texttt{Succ} \ \texttt{Zero}))\) denotes 2, and so forth. Implement the following Haskell functions.

a. \textit{intToNat} that takes a nonnegative \texttt{Int} and returns the equivalent \texttt{Nat}, for example, returns 0.

b. \textit{natToInt} that takes a \texttt{Nat} and returns the equivalent value of type \texttt{Int}, for example, returns 1.

c. \textit{addNat} that takes two \texttt{Nats} and returns their sum as a \texttt{Nat}. This
function cannot use integer addition.

d. \textit{mulNat} that takes two \texttt{Nats} and returns their product as a \texttt{Nat}. This
function cannot use integer multiplication or addition.

e. \textit{compNat} that takes two \texttt{Nats} and returns the value \(-1\) if the first is
less than the second, \(0\) if they are equal, and \(1\) if the first is greater
than the second. This function cannot use the integer comparison
operators.

7. Consider the following Haskell data type for representing sequences
(i.e. lists):

\textit{data} \texttt{Seq} \ a \ = \ \texttt{Nil} \ | \ \texttt{Att} \ (\texttt{Seq} \ a) \ a \\
\texttt{Nil} represents the empty sequence. \texttt{Att} \ \texttt{zx} \ \texttt{y} represents the sequence in
which last element \texttt{y} is “attached” at the right end of the initial sequence \texttt{zx}.

Note that \texttt{Att} is similar to the ordinary “cons” \((:)\) for Haskell lists except
that elements are attached at the opposite end of the sequences. \((\texttt{Att} \ (\texttt{Att} \ \texttt{Nil} \ 1) \ 2) \ 3\) represents the same sequence as the ordinary
list \((1:(2:(3:[]))))\).
Implement Haskell functions for the following operations on type \texttt{Seq}. The operations are analogous to the similarly named operations on the built-in Haskell lists.

a. \texttt{lastSeq} takes a nonempty \texttt{Seq} and returns its last (i.e. rightmost) element.

b. \texttt{initialSeq} takes a nonempty \texttt{Seq} and returns its initial sequence (i.e. sequence remaining after the last element removed).

c. \texttt{lenSeq} takes a \texttt{Seq} and returns the number of elements that it contains.

d. \texttt{headSeq} takes a nonempty \texttt{Seq} and returns its head (i.e. leftmost) element.

e. \texttt{tailSeq} takes a nonempty \texttt{Seq} and returns the \texttt{Seq} remaining after the head element is removed.

f. \texttt{conSeq} that takes an element and a \texttt{Seq} and returns a \texttt{Seq} with the argument element as its head and the \texttt{Seq} argument as its tail.

g. \texttt{appSeq} takes two arguments of type \texttt{Seq} and returns a \texttt{Seq} with the second argument appended after the first.

h. \texttt{revSeq} takes a \texttt{Seq} and returns the \texttt{Seq} with the same elements in reverse order.

i. \texttt{mapSeq} takes a function and a \texttt{Seq} and returns the \texttt{Seq} resulting from applying the function to each element of the sequence in turn.

j. \texttt{filterSeq} that takes a predicate and a \texttt{Seq} and returns the \texttt{Seq} containing only those elements that satisfy the predicate.

k. \texttt{listToSeq} takes an ordinary Haskell list and returns the \texttt{Seq} with the same values in the same order (e.g. \texttt{headSeq (listToSeq xs) = head xs} for nonempty \texttt{xs}.)

l. \texttt{seqToList} takes a \texttt{Seq} and returns the ordinary Haskell list with the same values in the same order (e.g. \texttt{head (seqToList xz) = headSeq xz} for nonempty \texttt{xz}.)

8. Consider the following Haskell data type for representing sequences (i.e. lists):

\begin{verbatim}
data Seq a = Nil | Unit a | Cat (Seq a) (Seq a)
\end{verbatim}

The constructor \texttt{Nil} represents the empty sequence; \texttt{Unit} represents a single-element sequence; and \texttt{Cat} represents the “concatenation” (i.e. append) of its two arguments, the second argument appended after the first.
Implement Haskell functions for the following operations on type `Seq`. The operations are analogous to the similarly named operations on the built-in Haskell lists. (Do not convert back and forth to lists.)

a. `toSeq` that takes a list and returns a corresponding `Seq` that is balanced.

b. `fromSeq` that takes a `Seq` and returns the corresponding list.

c. `appSeq` that takes two arguments of type `Seq` and returns a `Seq` with the second argument appended after the first.

d. `conSeq` that takes an element and a `Seq` and returns a `Seq` with the argument element as its head and the `Seq` argument as its tail.

e. `lenSeq` that takes a `Seq` and returns the number of elements that it contains.

f. `revSeq` that takes a `Seq` and returns a `Seq` with the same elements in reverse order.

g. `headSeq` that takes a nonempty `Seq` and returns its head (i.e. leftmost or front) element. (Be careful!)

h. `tailSeq` that takes a nonempty `Seq` and returns the `Seq` remaining after the head is removed.

i. `normSeq` that takes a `Seq` and returns a `Seq` with unnecessary embedded `Nils` removed. (For example, `normSeq (Cat (Cat Nil (Unit 1)) Nil)` returns `(Unit 1)`.)

j. `eqSeq` that takes two `Seqs` and returns `True` if the sequences of values are equal and returns `False` otherwise. Note that two `Seq` “trees” may be structurally different yet represent the same sequence of values.

For example, `(Cat Nil (Unit 1))` and `(Cat (Unit 1) Nil)` have the same sequence of values (i.e. [1]). But `(Cat (Unit 1) (Unit 2))` and `(Cat (Unit 2) (Unit 1))` do not represent the same sequence of values (i.e. [1,2] and [2,1], respectively).

Also `(Cat (Cat (Unit 1) (Unit 2)) (Unit 3))` has the same sequence of values as `(Cat (Cat (Unit 1) (Unit 2)) (Unit 3))` (i.e. [1,2,3]).

In general what are the advantages and disadvantages of representing lists this way?

21.7 Acknowledgements

In Summer 2016, I adapted and revised much of this work from the following sources:
• chapter 8 of my Notes on Functional Programming with Haskell [Cunningham 2014]

• my notes on Functional Data Structures (Scala) [Cunningham 2016] which are based, in part, on chapter 3 of the book Functional Programming in Scala [Chiusano 2015]

In 2017, I continued to develop this work as Chapter 8, Algebraic Data Types, of my 2017 Haskell-based programming languages textbook. I added discussion of the Maybe and Either types. For this work, I examined the Haskell Data.Maybe and Data.Either documentation and the Wikipedia article on “Option Type” [Wikipedia 2018f].

In Summer 2018, I revised this as Chapter 21, Algebraic Data Types, in the 2018 version of the textbook, now titled Exploring Languages with Interpreters and Functional Programming.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded LaTeX markup for the mathematical formulas and then translate the document to HTML, PDF, and other forms as needed.

21.8 References

[Cunningham 2016]: H. Conrad Cunningham, Functional Data Structures (Scala), 2016. (Lecture notes based, in part, on chapter 3 [Chiusano 2015].)

[Wikipedia 2018f]: Wikipedia* articles on “Algebraic Data Type”, “Abstract Data Type”, “Option Type”, and “Null Object Pattern”.

21.9 Terms and Concepts

Types, algebraic data types (composite), sum (tagged, disjoint union, variant, enumerated), product (tuple, record), nullary, recursive types, algebraic data types versus abstract data types, pattern matching, safe error handling, Maybe and Either “option” types, Null Object design pattern.