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17 Higher Order Function Examples

17.1 Chapter Introduction

The previous two chapters introduced the concepts of first-class and higher-order
functions and their implications for Haskell programming.

This chapter looks at additional examples that use these higher-order program-
ming concepts.

The Haskell module for this chapter’s code is in HigherOrderExamples.hs except
for the revised rational arithmetic module.

17.2 List-Breaking Operations

In a previous chapter we looked at the list-breaking functions take and drop.
The Prelude also includes several higher-order list-breaking functions that take
two arguments, a predicate that determines where the list is to be broken and
the list to be broken.

Here we look at Prelude functions takeWhile and dropWhile. As you would
expect, function takeWhile “takes” elements from the beginning of the list
“while” the elements satisfy the predicate and dropWhile “drops” elements from
the beginning of the list “while” the elements satisfy the predicate. The Prelude
definitions are similar to the following:

takeWhile':: (a -> Bool) -> [a] -> [a] -- takeWhile in Prelude
takeWhile' p [] = []
takeWhile' p (x:xs)

| p x = x : takeWhile' p xs
| otherwise = []

dropWhile' :: (a -> Bool) -> [a] -> [a] -- dropWhile in Prelude
dropWhile' p [] = []
dropWhile' p xs@(x:xs')

| p x = dropWhile' p xs'
| otherwise = xs

Note the use of the pattern xs@(x:xs’) in dropWhile'. This pattern matches
a non-nil list with x and xs’ binding to the head and tail, respectively, as usual.
Variable xs binds to the entire list.

As an example, suppose we want to remove the leading blanks from a string. We
can do that with the expression:

dropWhile ((==) ' ')
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As with take and drop, the above functions can also be related by a “law”. For
all finite lists xs and predicates p on the same type:

takeWhile p xs ++ dropWhile p xs = xs

Prelude function span combines the functionality of takeWhile and dropWhile
into one function. It takes a predicate p and a list xs and returns a tuple where
the first element is the longest prefix (possibly empty) of xs that satisfies p and
the second element is the remainder of the list.

span' :: (a -> Bool) -> [a] -> ([a],[a]) -- span in Prelude
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')

| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)

Thus the following “law” holds for all finite lists xs and predicates p on same
type:

span p xs == (takeWhile p xs, dropWhile p xs)

The Prelude also includes the function break, defined as follows:

break' :: (a -> Bool) -> [a] -> ([a],[a]) -- break in Prelude
break' p = span (not . p)

17.3 List-Combining operations

In a previous chapter, we also looked at the function zip, which takes two lists
and returns a list of pairs of the corresponding elements. Function zip applies
an operation, in this case tuple-construction, to the corresponding elements of
two lists.

We can generalize this pattern of computation with the function zipWith in
which the operation is an argument to the function.

zipWith' :: (a->b->c) -> [a]->[b]->[c] -- zipWith in Prelude
zipWith' z (x:xs) (y:ys) = z x y : zipWith' z xs ys
zipWith' _ _ _ = []

Using a lambda expression to state the tuple-forming operation, the Prelude
defines zip in terms of zipWith:

zip'' :: [a] -> [b] -> [(a,b)] -- zip
zip'' = zipWith' (\x y -> (x,y))

Or can be written more simply as:

zip''' :: [a] -> [b] -> [(a,b)] -- zip
zip''' = zipWith' (,)
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The zipWith function also enables us to define operations such as the scalar
product of two vectors in a concise way.

sp :: Num a => [a] -> [a] -> a
sp xs ys = sum' (zipWith' (*) xs ys)

The Prelude includes zipWith3 for triples. Library Data.List has versions of
zipWith that take up to seven input lists: zipWith3 · · · zipWith7.

17.4 Rational Arithmetic Revisited

Remember the rational number arithmetic package developed in an earlier
chapter. In that package’s Rational module, we defined a function eqRat to
compare two rational numbers for equality using the appropriate set of integer
comparisons.

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

We could have implemented the other comparison operations similarly.

Because the comparison operations are similar, they are good candidates for
us to use a higher-order function. We can abstract out the common pattern of
comparisons into a function that takes the corresponding integer comparison as
an argument.

To compare two rational numbers, we can express their values in terms of a
common denominator (e.g. denom x * denom y) and then compare the numer-
ators using the integer comparisons. We can thus abstract the comparison into
a higher-order function compareRat that takes an appropriate integer relational
operator and the two rational numbers.

compareRat :: (Int -> Int -> Bool) -> Rat -> Rat -> Bool
compareRat r x y = r (numer x * denom y) (denom x * numer y)

Then we can define the rational number comparisons in terms of compareRat.
(Note that we redefine function eqRat from the package in the earlier chapter.)

eqRat,neqRat,ltRat,leqRat,gtRat,geqRat :: Rat -> Rat -> Bool
eqRat = compareRat (==)
neqRat = compareRat (/=)
ltRat = compareRat (<)
leqRat = compareRat (<=)
gtRat = compareRat (>)
geqRat = compareRat (>=)

The Haskell module for the revised rational arithmetic module is in
RationalHO.hs. The module TestRationalHO.hs is an extended version of
the standard test script from Chapter 12 that tests the standard features of
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the rational arithmetic module plus eqRat, neqRat, and ltRat. (It does not
currently test leqRat, gtRat, or geqRat.)

17.5 Merge Sort

We defined the insertion sort in a previous chapter. It has an average-case time
complexity of O(n2) where n is the length of the input list.

We now consider a more efficient function to sort the elements of a list into
ascending order: merge sort. Merge sort works as follows:

• If the list has fewer than two elements, then it is already sorted.

• If the list has two or more elements, then we split it into two sublists, each
with about half the elements, and sort each recursively.

• We merge the two ascending sublists into an ascending list.

We define function msort to be a polymorphic, higher-order function that has
two parameters. The first (less) is the comparison operator and the second
(xs) is the list to be sorted. Function less must be defined for every element
that appears in the list to be sorted.

msort :: Ord a => (a -> a -> Bool) -> [a] -> [a]
msort _ [] = []
msort _ [x] = [x]
msort less xs = merge less (msort less ls) (msort less rs)

where n = (length xs) `div` 2
(ls,rs) = splitAt n xs
merge _ [] ys = ys
merge _ xs [] = xs
merge less ls@(x:xs) rs@(y:ys)

| less x y = x : (merge less xs rs)
| otherwise = y : (merge less ls ys)

By nesting the definition of merge, we enabled it to directly access the the
parameters of msort. In particular, we did not need to pass the comparison
function to merge.

Assuming that less evaluates in constant time, the time complexity of msort is
O(n log(n)), where n is the length of the input list.

• Each call level requires splitting of the list in half and merging of the two
sorted lists. This takes time proportional to the length of the list argument.

• Each call of msort for lists longer than one results in two recursive calls of
msort.

• But each successive call of msort halves the number of elements in its
input, so there are O(log(n)) recursive calls.

5



So the total cost is O(n log(n)). The cost is independent of distribution of
elements in the original list.

We can apply msort as follows:

msort (<) [5, 7, 1, 3]

Function msort is defined in curried form with the comparison function first.
This enables us to conveniently specialize msort with a specific comparison
function. For example,

descendSort :: Ord a => [a] -> [a]
descendSort = msort (\ x y -> x > y) -- or (>)

17.6 What Next?

This chapter and the two that proceeded it examined higher-order list program-
ming concepts and features.

The next chapter examines list comprehensions, an alternative syntax for higher-
order list processing that is likely comfortable for programmers coming from an
imperative programming background.

17.7 Exercises

TODO: Add Wally World Marketplace POP Project and other exercises?

1. Define a Haskell function

removeFirst :: (a -> Bool) -> [a] -> [a}

so that removeFirst p xs removes the first element of xs that has the
property p.

2. Define a Haskell function

removeLast :: (a -> Bool) -> [a] -> [a]

so that removeLast p xs removes the last element of xs that has the
property p.

How could you define it using removeFirst?

3. A list s is a prefix of a list t if there is some list u (perhaps nil) such that
s ++ u == t. For example, the prefixes of string "abc" are "", "a", "ab",
and "abc".

A list s is a suffix of a list t if there is some list u (perhaps nil) such that
u ++ s == t. For example, the suffixes of "abc" are "abc", "bc", "c",
and "".
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A list s is a segment of a list t if there are some (perhaps nil) lists u and v
such that u ++ s ++ v = t. For example, the segments of string "abc"
consist of the prefixes and the suffixes plus "b".

Define the following Haskell functions. You may use functions appearing
early in the list to implement later ones.

a. Define a function prefix such that prefix xs ys returns True if xs
is a prefix of ys and returns False otherwise.

b. Define a function suffixes such that suffixes xs returns the list
of all suffixes of list xs. (Hint: Generate them in the order given in
the example of "abc" above.)

c. Define a function indexes such that indexes xs ys returns a list
of all the positions at which list xs appears in list ys. Consider
the first character of ys as being at position 0. For example,
indexes "ab" "abaabbab" returns [1,4,7]. (Hint: Remember
functions like map, filter, zip, and the functions you just defined.)

d. Define a function sublist such that sublist xs ys returns True if
list xs appears as a segment of list ys and returns False otherwise.

4. Assume that the following Haskell type synonyms have been defined:

type Word = String -- word, characters left-to-right
type Line = [Word] -- line, words left-to-right
type Page = [Line] -- page, lines top-to-bottom
type Doc = [Page] -- document, pages front-to-back

Further assume that values of type Word do not contain any space characters.
Implement the following Haskell text-handling functions:

a. npages that takes a Doc and returns the number of Pages in the
document.

b. nlines that takes a Doc and returns the number of Lines in the
document.

c. nwords that takes a Doc and returns the number of Words in the
document.

d. nchars that takes a Doc and returns the number of Chars in the
document (not including spaces of course).

e. deblank that takes a Doc and returns the Doc with all blank lines
removed. A blank line is a line that contains no words.

f. linetext that takes a Line and returns the line as a String with
the words appended together in left-to-right order separated by space
characters and with a newline character '\n' appended to the right
end of the line. (For example, linetext ["Robert", "Khayat"]
yields "Robert Khayat\n".)
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g. pagetext that takes a Page and returns the page as a String—applies
linetext to its component lines and appends the result in a top-to-
bottom order.

h. doctext that takes a Doc and returns the document as a String—
applies pagetext to its component lines and appends the result in a
top-to-bottom order.

i. wordeq that takes a two Docs and returns True if the two docu-
ments are word equivalent and False otherwise. Two documents
are word equivalent if they contain exactly the same words in
exactly the same order regardless of page and line structure.
For example, [[["Robert"],["Khayat"]]] is word equivalent to
[[["Robert","Khayat"]]].
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17.10 Terms and Concepts

List-breaking (splitting) operators, list-combining operators, rational arithmetic,
merge sort.
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