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16 Haskell Function Concepts

16.1 Chapter Introduction

The previous chapter introduced the concepts of first-class and higher-order
functions and generalized common computational patterns to construct a library
of useful higher-order functions to process lists.

This chapter continues to examine those concepts and their implications for
Haskell programming. It explores strictness, currying, partial application, com-
binators, operator sections, functional composition, inline function definitions,
evaluation strategies, and related methods.

The Haskell module for this chapter is in FunctionConcepts.hs.

16.2 Strictness

In the discussion of the fold functions, the previous chapter introduced the
concept of strictness. In this section, we explore that in more depth.

Some expressions cannot be reduced to a simple value, for example, div 1 0.
The attempted evaluation of such expressions either return an error immediately
or cause the interpreter to go into an “infinite loop”.

In our discussions of functions, it is often convenient to assign the symbol ⊥
(pronounced “bottom”) as the value of expressions like div 1 0. We use ⊥ is a
polymorphic symbol—as a value of every type.

The symbol ⊥ is not in the Haskell syntax and the interpreter cannot actually
generate the value ⊥. It is merely a name for the value of an expression in
situations where the expression cannot really be evaluated. It’s use is somewhat
analogous to use of symbols such as ∞ in mathematics.

Although we cannot actually produce the value ⊥, we can, conceptually at least,
apply any function to ⊥.

If f ⊥ = ⊥, then we say that the function is strict; otherwise, it is nonstrict
(sometimes called lenient).

That is, a strict argument of a function must be evaluated before the final result
can be computed. A nonstrict argument of a function may not need to be
evaluated to compute the final result.

Assume that lazy evaluation is being used and consider the function two that
takes an argument of any type and returns the integer value two.

two :: a -> Int
two x = 2
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The function two is nonstrict. The argument expression is not evaluated to
compute the final result. Hence, two ⊥ = 2.

Consider the following examples.

• The arithmetic operations (e.g. +) are strict in both arguments.

• Function rev (discussed in a previous chapter) is strict in its one argument.

• Operation ++ is strict in its first argument, but nonstrict in its second
argument.

• Boolean functions && and || from the Prelude are also strict in their first
arguments and nonstrict in their second arguments.

(&&), (||) :: Bool -> Bool -> Bool
False && x = False -- second argument not evaluated
True && x = x

False || x = x
True || x = True -- second argument not evaluated

16.3 Currying and Partial Application

Consider the following two functions:

add :: (Int,Int) -> Int
add (x,y) = x + y

add' :: Int -> (Int -> Int)
add' x y = x + y

These functions are closely related, but they are not identical.

For all integers x and y, add (x,y) == add’ x y. But functions add and add’
have different types.

Function add takes a 2-tuple (Int,Int) and returns an Int. Function add’
takes an Int and returns a function of type Int -> Int.

What is the result of the application add 3? An error.

What is the result of the application add’ 3? The result is a function that “adds
3 to its argument”.

What is the result of the application (add’ 3) 4? The result is the integer value
7.

By convention, function application (denoted by the juxtaposition of a function
and its argument) binds to the left. That is, add’ x y = ((add’ x) y).
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Hence, the higher-order functions in Haskell allow us to replace any function
that takes a tuple argument by an equivalent function that takes a sequence of
simple arguments corresponding to the components of the tuple. This process is
called currying. It is named after American logician Haskell B. Curry, who first
exploited the technique.

Function add’ above is similar to the function (+) from the Prelude (i.e. the
addition operator).

We sometimes speak of the function (+) as being partially applied in the expres-
sion ((+) 3). In this expression, the first argument of the function is “frozen in”
and the resulting function can be passed as an argument, returned as a result,
or applied to another argument.

Partially applied functions are very useful in conjunction with other higher-order
functions.

For example, consider the partial applications of the relational comparison
operator (<) and multiplication operator (*) in the function doublePos3. This
function, which is equivalent to the function doublePos discussed in an earlier
section, doubles the positive integers in a list:

doublePos3 :: [Int] -> [Int]
doublePos3 xs = map ((*) 2) (filter ((<) 0) xs)

Related to the concept of currying is the property of extensionality. Two functions
f and g are extensionally equal if f x == g x for all x.

Thus instead of writing the definition of g as

f, g :: a -> a
f x = some_expression

g x = f x

we can write the definition of g as simply:

g = f

16.4 Operator Sections

Expressions such as ((*) 2) and ((<) 0), used in the definition of doublePos3
in the previous section, can be a bit confusing because we normally use these
operators in infix form. (In particular, it is difficult to remember that ((<) 0)
returns True for positive integers.)

Also, it would be helpful to be able to use the division operator to express a
function that halves (i.e. divides by two) its operand. The function ((/) 2)
does not do it; it divides 2 by its operand.
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We can use the function flip from the Prelude to state the halving operation.
Function flip takes a function and two additional arguments and applies the
argument function to the two arguments with their order reversed.

flip' :: (a -> b -> c) -> b -> a -> c -- flip in Prelude
flip' f x y = f y x

Thus we can express the halving operator with the expression (flip (/) 2).

Because expressions such as ((<) 0) and (flip (/) 2) are quite common in
programs, Haskell provides a special, more compact and less confusing, syntax.

For some infix operator ⊕ and arbitrary expression e, expressions of the form (e
⊕) and ( ⊕e) represent (( ⊕) e) and (flip ( ⊕) e), respectively. Expressions
of this form are called operator sections.

Examples of operator sections include:

(1+) is the successor function, which returns the value of its argument
plus 1.

(0<) is a test for a positive integer.

(/2) is the halving function.

(1.0/) is the reciprocal function.

(:[]) is the function that returns the singleton list containing the
argument.

Suppose we want to sum the cubes of list of integers. We can express the function
in the following way:

sumCubes :: [Int] -> Int
sumCubes xs = sum (map (^3) xs)

Above ^ is the exponentiation operator and sum is the list summation function
defined in the Prelude as:

sum = foldl' (+) 0 -- sum

16.5 Combinators

The function flip in the previous section is an example of a useful type of
function called a combinator.

A combinator is a function without any free variables. That is, on right side of a
defining equation there are no variables or operator symbols that are not bound
on the left side of the equation.

For historical reasons, flip is sometimes called the C combinator.

There are several other useful combinators in the Prelude.
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The combinator const (shown below as const’) is the constant function con-
structor; it is a two-argument function that returns its first argument. For
historical reasons, this combinator is sometimes called the K combinator.

const' :: a -> b -> a -- const in Prelude
const' k x = k

Example: (const 1) takes any argument and returns the value 1.

Question: What does sum (map (const 1) xs) do?

Function id (shown below as id’) is the identity function; it is a one-argument
function that returns its argument unmodified. For historical reasons, this
function is sometimes called the I combinator.

id' :: a -> a -- id in Prelude
id' x = x

Combinators fst and snd (shown below as fst’ and snd’) extract the first and
second components, respectively, of 2-tuples.

fst' :: (a,b) -> a -- fst in Prelude
fst' (x,_) = x

snd' :: (a,b) -> b -- snd in Prelude
snd' (_,y) = y

Similarly, fst3, snd3, and thd3 extract the first, second, and third components,
respectively, of 3-tuples.

TODO: Correct above statement. No longer seems correct. Data.Tuple.Select
sel1, sel2, sel2, etc.

An interesting example that uses a combinator is the function reverse as defined
in the Prelude (shown below as reverse’):

reverse' :: [a] -> [a] -- reverse in Prelude
reverse' = foldlX (flip' (:)) []

Function flip (:) takes a list on the left and an element on the right. As this
operation is folded through the list from the left it attaches each element as the
new head of the list.

We can also define combinators that convert an uncurried function into a curried
function and vice versa. The functions curry' and uncurry' defined below are
similar to the Prelude functions.

curry' :: ((a, b) -> c) -> a -> b -> c --Prelude curry
curry' f x y = f (x, y)

uncurry' :: (a -> b -> c) -> ((a, b) -> c) --Prelude uncurry
uncurry' f p = f (fst p) (snd p)
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Two other useful combinators are fork and cross [Bird 2015]. Combinator
fork applies each component of a pair of functions to a value to create a pair of
results. Combinator cross applies each component of a pair of functions to the
corresponding components of a pair of values to create a pair of results. We can
define these as follows:

fork :: (a -> b, a -> c) -> a -> (b,c)
fork (f,g) x = (f x, g x)

cross :: (a -> b, c -> d) -> (a,c) -> (b,d)
cross (f,g) (x,y) = (f x, g y)

16.6 Functional Composition

The functional composition operator allows several “smaller” functions to be
combined to form “larger” functions. In Haskell, this combinator is denoted by
the period (.) symbol and is defined in the Prelude as follows:

infixr 9 .
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Composition’s default binding is from the right and its precedence is higher than
all the operators we have discussed so far except function application itself.

Functional composition is an associative binary operation with the identity
function id as its identity element:

f . (g . h) = (f . g) . h
id . f = f . id

16.7 Function Pipelines

As an example, consider the function count that takes two arguments, an integer
n and a list of lists, and returns the number of the lists from the second argument
that are of length n. Note that all functions composed below are single-argument
functions: length, (filter (== n)), (map length).

count :: Int -> [[a]] -> Int
count n -- unprimed versions from Prelude

| n >= 0 = length . filter (== n) . map length
| otherwise = const 0 -- discard 2nd arg, return 0

We can think of the point-free expression length . filter (== n) . map length
as defining a function pipeline through which data flows from right to left.

1. The pipeline takes a polymorphic list of lists as input.
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2. The map length component of the pipeline replaces each inner list by its
length.

3. The filter (== n) component takes the list created by the previous step
and removes all elements not equal to n.

4. The length component takes the list created by the previous step and
determines how many elements are remaining.

5. The pipeline outputs the value computed by the previous component. The
number of lists within the input list of lists that are of length n.

Thus composition is a powerful form of “glue” that can be used to “stick” simpler
functions together to build more powerful functions. The simpler functions in
this case include partial applications of higher order functions from the library
we have developed.

As we see above in the definition of count, partial applications (e.g.
filter (== n)), operator sections (e.g. (== n)), and combinators (e.g. const)
are useful as plumbing the function pipeline.

Remember the function doublePos that we discussed in earlier sections.

doublePos3 xs = map ((*) 2) (filter ((<) 0) xs)

Using composition, partial application, and operator sections we can restate its
definition in point-free style as follows:

doublePos4 :: [Int] -> [Int]
doublePos4 = map (2*) . filter (0<)

Consider a function last to return the last element in a non-nil list and a
function init to return the initial segment of a non-nil list (i.e. everything
except the last element). These could quickly and concisely be written as follows:

last' = head . reverse -- last in Prelude
init' = reverse . tail . reverse -- init in Prelude

However, since these definitions are not very efficient, the Prelude implements
functions last and init in a more direct and efficient way similar to the
following:

last2 :: [a] -> a -- last in Prelude
last2 [x] = x
last2 (_:xs) = last2 xs

init2 :: [a] -> [a] -- init in Prelude
init2 [x] = []
init2 (x:xs) = x : init2 xs

The definitions for Prelude functions any and all are similar to the definitions
show below; they take a predicate and a list and apply the predicate to each

8



element of the list, returning True when any and all, respectively, of the individual
tests evaluate to True.

any', all' :: (a -> Bool) -> [a] -> Bool
any' p = or' . map' p -- any in Prelude
all' p = and' . map' p -- all in Prelude

The functions elem and notElem test for an object being an element of a list
and not an element, respectively. They are defined in the Prelude similarly to
the following:

elem', notElem' :: Eq a => a -> [a] -> Bool
elem' = any . (==) -- elem in Prelude
notElem' = all . (/=) -- notElem in Prelude

These are a bit more difficult to understand since any, all, ==, and /= are
two-argument functions. Note that expression elem x xs would be evaluated as
follows:

elem’ x xs
=⇒ { expand elem’ }

(any’ . (==)) x xs
=⇒ { expand composition }

any’ ((==) x) xs

The composition operator binds the first argument with (==) to construct the
first argument to any’. The second argument of any’ is the second argument of
elem’.

16.8 Lambda Expressions

Remember the function squareAll2 we examined in an earlier section on maps:

squareAll2 :: [Int] -> [Int]
squareAll2 xs = map' sq xs

where sq x = x * x

We introduced the local function definition sq to denote the function to be
passed to map. It seems to be a waste of effort to introduce a new symbol for a
simple function that is only used in one place in an expression. Would it not
be better, somehow, to just give the defining expression itself in the argument
position?

Haskell provides a mechanism to do just that, an anonymous function definition.
For historical reasons, these nameless functions are called lambda expressions.
They begin with a backslash \{.haskell} and have the syntax:

\ atomicPatterns -> expression
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For example, the squaring function (sq) could be replaced by a lambda expression
as (\x -> x * x). The pattern x represents the single argument for this
anonymous function and the expression x * x is its result.

Thus we can rewrite squareAll2 in point-free style using a lambda expression
as follows:

squareAll3 :: [Int] -> [Int]
squareAll3 = map' (\x -> x * x)

A lambda expression to average two numbers can be written (\x y -> (x+y)/2).

An interesting example that uses a lambda expression is the function length
as defined in the Prelude—similar to length4 below. (Note that this uses the
optimized function foldl' from the standard Haskell Data.List module.)

length4 :: [a] -> Int -- length in Prelude
length4 = foldl' (\n _ -> n+1) 0

The anonymous function (\n _ -> n+1) takes an integer “counter” and a
polymorphic value and returns the “counter” incremented by one. As this
function is folded through the list from the left, this function counts each element
of the second argument.

16.9 Application Operator $

In Haskell, function application associates to the left and has higher binding
power than any infix operator. For example, for some function two-argument
function f and values w, x, y, and z

w + f x y * z

is the same as

w + (((f x) y) * z)

given the relative binding powers of function application and the numeric opera-
tors.

However, sometimes we want to be able to use function application where it
associates to the right and binds less tightly than any other operator. Haskell
defines the $ operator to enable this style, as follows:

infixr 0 $
($) :: (a -> b) -> a -> b
f $ x = f x

Thus, for single argument functions f, g, and h,

f $ g $ h $ z + 7

is the same as
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(f (g (h (z+7))))

and as:

(f . g . h) (z+7)

Similarly, for two-argument functions f', g', and h',

f' w $ g' x $ h' y $ z + 7

is the same as

((f' w) ((g' x) ((h' y) (z+7))))

and as:

(f' w . g' x . h' y) (z+7)

For example, this operator allows us to write

foldr (+) 0 $ map (2*) $ filter odd $ enumFromTo 1 20

where Prelude function enumFromTo m n generates the sequence of integers from
m to n, inclusive.

16.10 Eager Evaluation Using seq and $!

Haskell is a lazily evaluated language. That is, if an argument is nonstrict it
may never be evaluated.

Sometimes, using the technique called strictness analysis, the Haskell compiler
can detect that an argument’s value will always be needed. The compiler can
then safely force eager evaluation as an optimization without changing the
meaning of the program.

In particular, by selecting the -O option to the Glasgow Haskell Compiler (GHC),
we can enable GHC’s code optimization processing. GHC will generally create
smaller, faster object code at the expense of increased compilation time by taking
advantage of strictness analysis and other optimizations.

However, sometimes we may want to force eager evaluation explicitly without
invoking a full optimization on all the code (e.g. to make a particular function’s
evaluation more space efficient). Haskell provides the primitive function seq
that enables this. That is,

seq :: a -> b -> b
x `seq` y = y

where it just returns the second argument except that, as a side effect, x is
evaluated before y is returned. (Technically, x is evaluated to what is called head
normal form. It is evaluated until the outer layer of structure such as h:t is
revealed, but h and t themselves are not fully evaluated. We examine evaluation
in more detail in a later chapter.)
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Function foldl, the “optimized” version of foldl can be defined using seq as
follows

foldlP :: (a -> b -> a) -> a -> [b] -> a -- Data.List.foldl'
foldlP f z [] = z
foldlP f z (x:xs) = y `seq` foldl' f y xs

where y = f z x

That is, this evaluates the z argument of the tail recursive application eagerly.

Using seq, Haskell also defines $!, a strict version of the $ operator, as follows:

infixr 0 $!
($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

The effect of f $! x is the same as f $ x except that $! eagerly evaluates the
argument x before applying function f to it.

We can rewrite foldl' using $! as follows:

foldlQ :: (a -> b -> a) -> a -> [b] -> a -- Data.List.foldl'
foldlQ f z [] = z
foldlQ f z (x:xs) = (foldlQ f $! f z x) xs

We can write a tail recursive function to sum the elements of the list as follows:

sum4 :: [Integer] -> Integer -- sum in Prelude
sum4 xs = sumIter xs 0

where sumIter [] acc = acc
sumIter (x:xs) acc = sumIter xs (acc+x)

We can then redefine sum4 to force eager evaluation of the accumulating parameter
of sumIter as follows:

sum5 :: [Integer] -> Integer -- sum in Prelude
sum5 xs = sumIter xs 0

where sumIter [] acc = acc
sumIter (x:xs) acc = sumIter xs $! acc + x

However, we need to be careful in applying seq and $!. They change the
semantics of the lazily evaluated language in the case where the argument is
nonstrict. They may force a program to terminate abnormally and/or cause it
to take unnecessary evaluation steps.

16.11 What Next?

The previous chapter introduced the concepts of first-class and higher-order
functions and generalized common computational patterns to construct a library
of useful higher-order functions to process lists. This chapter continued to
examine those concepts and their implications for Haskell programming by
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exploring concepts and features such as strictness, currying, partial application,
combinators, operator sections, functional composition, inline function definitions,
and evaluation strategies.

The next chapter looks at additional examples that use these higher-order
programming concepts.

16.12 Exercises

1. Define a Haskell function

total :: (Integer -> Integer) -> Integer -> Integer

so that total f n gives f 0 + f 1 + f 2 + ... + f n. How could you
define it using removeFirst?

2. Define a Haskell function map2 that takes a list of functions and a list of
values and returns the list of results of applying each function in the first
list to the corresponding value in the second list.

3. Define a Haskell function fmap that takes a value and a list of functions
and returns the list of results from applying each function to the argument
value. (For example, fmap 3 [((*) 2), ((+) 2)] yields [6,5].)

4. Define a Haskell function composeList that takes a list of functions and
composes them into a single function. (Be sure to give the type signature.)
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In Summer 2018, I divided the previous Higher-Order Functions chapter into
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with Interpreters and Functional Programming. Previous sections 5.1-5.2 became
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16.15 Terms and Concepts

Strict and nonstrict functions, bottom, strictness analysis, currying, partial
application, operator sections, combinators, functional composition, property
of extensionality, pointful and point-free styles, plumbing, function pipeline,
lambda expression, application operator $, eager evaluation operators seq and
$!, head-normal form.
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