
Exploring Languages with Interpreters
and Functional Programming

Chapter 14

H. Conrad Cunningham

17 October 2018

Contents
14 Infix Operators and List Examples 2

14.1 Chapter Introduction . 2
14.2 Using Infix Operations . 2

14.2.1 Appending two lists: ++ 3
14.2.2 Properties of operations 5
14.2.3 Element selection: !! . 5
14.2.4 Reversing a list: rev . 6
14.2.5 Tail recursive reverse . 7

14.3 More Useful List Functions . 8
14.3.1 Another list-breaking function: splitAt 8
14.3.2 List-combining operations: zip and unzip 8

14.4 Insertion Sort . 9
14.5 What Next? . 10
14.6 Exercises . 10
14.7 Acknowledgements . 17
14.8 References . 18
14.9 Terms and Concepts . 18

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires use of a
browser that supports the display of MathML. A good choice as of October 2018
is a recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

14 Infix Operators and List Examples

14.1 Chapter Introduction

This chapter introduces Haskell infix operations and continues to develop tech-
niques for first-order polymorphic functions to process lists.

The goals of the chapter are to:

• introduce Haskell syntax and semantics for infix operations

• examine correct Haskell functional programs consisting of first-order poly-
morphic functions that solve problems by processing lists and strings

• explore methods for developing Haskell list-processing programs that ter-
minate and are efficient and elegant.

The Haskell module for this chapter is in ListProgExamples.hs.

14.2 Using Infix Operations

In Haskell, a binary operation is a function of type t1 -> t2 -> t3 for some
types t1, t2, and t3.

We usually prefer to use infix syntax rather than prefix syntax to express the
application of a binary operation. Infix operators usually make expressions easier
to read; they also make statement of mathematical properties more convenient.

Often we use several infix operators in an expression. To ensure that the
expression is not ambiguous (i.e. the operations are done in the desired order), we
must either use parentheses to give the order explicitly (e.g. ((y * (z+2)) + x))
or use syntactic conventions to give the order implicitly.

Typically the application order for adjacent operators of different kinds is deter-
mined by the relative precedence of the operators. For example, the multiplication
(*) operation has a higher precedence (i.e. binding power) than addition (+), so,
in the absence of parentheses, a multiplication will be done before an adjacent
addition. That is, x + y * z is taken as equivalent to (x + (y * z)).

In addition, the application order for adjacent operators of the same binding
power is determined by a binding (or association) order. For example, the addi-
tion (+) and subtraction - operations have the same precedence. By convention,
they bind more strongly to the left in arithmetic expressions. That is, x + y - z
is taken as equivalent ((x + y) - z).

By convention, operators such as exponentiation (denoted by ^) and cons bind
more strongly to the right. Some other operations (e.g. division and the relational
comparison operators) have no default binding order—they are said to have free
binding.

2

ListProgExamples.hs

Accordingly, Haskell provides the statements infix, infixl, and infixr for
declaring a symbol to be an infix operator with free, left, and right binding,
respectively. The first argument of these statements give the precedence level
as an integer in the range 0 to 9, with 9 being the strongest binding. Normal
function application has a precedence of 10.

The operator precedence table for a few of the common operations from the
Prelude is shown below. We introduce the ++ operator in the next subsection.

infixr 8 ^ -- exponentiation
infixl 7 * -- multiplication
infix 7 / -- division
infixl 6 +, - -- addition, subtraction
infixr 5 : -- cons
infix 4 ==, /=, <, <=, >=, > -- relational comparisons
infixr 3 && -- Boolean AND
infixr 2 || -- Boolean OR

14.2.1 Appending two lists: ++

Suppose we want a function that takes two lists and returns their concatenation,
that is, appends the second list after the first. This function is a binary operation
on lists much like + is a binary operation on integers.

Further suppose we want to introduce the infix operator symbol ++ for the
append function. Since we want to evaluate lists lazily from their heads, we
choose right binding for both cons and ++. Since append is, in a sense, an
extension of cons (:), we give them the same precedence:

infixr 5 ++

Consider the definition of the append function. We must define the ++ operation
in terms of application of already defined list operations and recursive applications
of itself. The only applicable simpler operation is cons.

As with previous functions, we follow the type to the implementation—let the
form of the data guide the form of the algorithm.

The cons operator takes an element as its left operand and a list as its right
operand and returns a new list with the left operand as the head and the right
operand as the tail.

Similarly, ++ must take a list as its left operand and a list as its right operand
and return a new list with the left operand as the initial segment and the right
operand as the final segment.

Given the definition of cons, it seems reasonable that an algorithm for ++ must
consider the structure of its left operand. Thus we consider the cases for nil and
non-nil left operands.

3

• If the left operand is nil, then the function can just return the right operand.

• If the left operand is a cons (that is, non-nil), then the result consists of
the left operand’s head followed by the append of the left operand’s tail to
the right operand.

In following the type to the implementation, we use the form of the left operand
in a pattern match. We define ++ as follows:

infixr 5 ++

(++) :: [a] -> [a] -> [a]
[] ++ xs = xs -- nil left operand
(x:xs) ++ ys = x:(xs ++ ys) -- non-nil left operand

Above we use infix patterns on the left-hand sides of the defining equations.

For the recursive application of ++, the length of the left operand decreases by
one. Hence the left operand of a ++ application eventually becomes nil, allowing
the evaluation to terminate.

Consider the evaluation of the expression [1,2,3] ++ [3,2,1].

[1,2,3] ++ [3,2,1]
=⇒ 1:([2,3] ++ [3,2,1])
=⇒ 1:(2:([3] ++ [3,2,1]))
=⇒ 1:(2:(3:([] ++ [3,2,1])))
=⇒ 1:(2:(3:[3,2,1]))
= [1,2,3,3,2,1]

The number of steps needed to evaluate xs ++ ys is proportional to the length
of xs, the left operand. That is, the time complexity is O(n), where n is the
length xs.

Moreover, xs ++ ys only needs to copy the list xs. The list ys is shared between
the second operand and the result. If we did a similar function to append two
(mutable) arrays, we would need to copy both input arrays to create the output
array. Thus, in this case, a linked list is more efficient than arrays!

Consider the following questions:

• What is the precondition of xs ++ ys?

• Is ++ tail recursive?

• What is the space complexity of ++?

4

14.2.2 Properties of operations

The append operation has a number of useful algebraic properties, for example,
associativity and an identity element.

Associativity of ++: For any finite lists xs, ys, and zs, xs ++ (ys ++ zs) == (xs ++ ys) ++ zs.

Identity for ++: For any finite list xs, [] ++ xs = xs = xs ++ [].

We will prove these and other properties in Chapter 25.

Mathematically, the list data type and the binary operation ++ form a kind of
abstract algebra called a monoid. Function ++ is closed (i.e. it takes two lists
and gives a list back), is associative, and has an identity element.

Similarly, we can state properties of combinations of functions. We can prove
these using techniques we study in a later chapter. For example, consider the
functions defined above in this chapter.

• For all finite lists xs, we have the following distribution properties:

sum' (xs ++ ys) = sum' xs + sum' ys
product' (xs ++ ys) = product' xs * product' ys
length' (xs ++ ys) = length' xs + length' ys

• For all natural numbers n and finite lists xs,

take n xs ++ drop n xs = xs

14.2.3 Element selection: !!

As another example of an infix operation, consider the list selection operator !!.
The expression xs!!n selects element n of list xs where the head is in position 0.
It is defined in the Prelude similar to the way !! is defined below:

infixl 9 !!

(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "!! negative index"
[] !! _ = error "!! index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

Consider the following questions concerning the element selection operator:

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
• What are its time and space complexities?

5

14.2.4 Reversing a list: rev

Consider the problem of reversing the order of the elements in a list.

Again we can use the structure of the data to guide the algorithm development.
If the argument is nil, then the function returns nil. If the argument is non-nil,
then the function can append the head element at the back of the reversed tail.

rev :: [a] -> [a]
rev [] = [] -- nil argument
rev (x:xs) = rev xs ++ [x] -- non-nil argument

Given that evaluation of ++ terminates, we note that evaluation of rev also
terminates because all recursive applications decrease the length of the argument
by one.

How efficient is this function?

Consider the evaluation of the expression rev "bat".

rev "bat"
=⇒ (rev "at") ++ "b"
=⇒ ((rev "t") ++ "a") ++ "b"{.haskell}
=⇒ (((rev "") ++ "t") ++ "a") ++ "b"
=⇒ (("" ++ "t") ++ "a") ++ "b"
=⇒ ("t" ++ "a") ++ "b"
=⇒ ('t':("" ++ "a")) ++ "b"
=⇒ "ta" ++ "b"
=⇒ 't':("a" ++ "b")
=⇒ 't':('a':("" ++ "b"))
=⇒ 't':('a':"b")
= "tab"

The evaluation of rev takes O(n2) steps, where n is the length of the argument.
There are O(n) applications of rev; for each application of rev there are O(n)
applications of ++.

The initial list and its reverse do not share data.

Function rev has a number of useful properties, for example the following.

Distribution: For any finite lists xs and ys, rev (xs ++ ys) = rev ys ++ rev xs.

Inverse: For any finite list xs, rev (rev xs) = xs.

Also, for any finite lists xs and ys and natural numbers n, we can state properties
such as:

rev (xs ++ ys) = rev ys ++ rev xs
take n (rev xs) = rev (drop (length xs - n) xs)

6

14.2.5 Tail recursive reverse

Most of the list function definitions examined so far are backward recursive.
That is, for each case the recursive applications are embedded within another
expression. Operationally, significant work is done after the recursive call returns.

Now let’s look at the problem of reversing a list again to see whether we can
devise a more efficient tail recursive solution.

As we have seen, the common technique for converting a backward linear recursive
definition like rev into a tail recursive definition is to use an accumulating
parameter to build up the desired result incrementally. A possible definition
follows:

rev' [] ys = ys
rev' (x:xs) ys = rev' xs (x:ys)

In this definition parameter ys is the accumulating parameter. The head of the
first argument becomes the new head of the accumulating parameter for the tail
recursive call. The tail of the first argument becomes the new first argument for
the tail recursive call.

We know that rev’ terminates because, for each recursive application, the length
of the first argument decreases toward the base case of [].

We note that rev xs is equivalent to rev’ xs []. (We can prove this using the
techniques in a later chapter.)

To define a single-argument replacement for rev, we can embed the definition of
rev’ as an auxiliary function within the definition of a new function reverse’.
(This is similar to function reverse in the Prelude.)

reverse' :: [a] -> [a]
reverse' xs = rev xs []

where rev [] ys = ys
rev (x:xs) ys = rev xs (x:ys)

The where clause introduces the local definition rev’ that is only known within
the right-hand side of the defining equation for the function reverse’.

What is the time complexity of this function?

The evaluation of reverse’ takes O(n) steps, where n is the length of the
argument. There is one application of rev’ for each element; rev’ requires a
single cons operation in the accumulating parameter.

Where did the increase in efficiency come from?

Each application of rev applies ++, a linear time (i.e. O(n)) function. In rev’,
we replaced the applications of ++ by applications of cons, a constant time (i.e.
O(1)) function.

7

In addition, a compiler or interpreter that does tail call optimization can translate
this tail recursive call into a loop on the host machine.

14.3 More Useful List Functions

14.3.1 Another list-breaking function: splitAt

Above we defined list-breaking functions take' and drop'. It is sometimes
useful to have a single function that breaks a list into two parts.

The function splitAt (shown below as splitAt') takes an integer n and a list
and returns a pair whose first component is the first n elements of the list and
second component is the list remaining after the first n elements are removed.

splitAt' :: Int -> [a] -> ([a],[a])
splitAt' n xs = (take' n xs, drop' n xs)

Can we write an alternative definition that makes only one pass over argument
xs? (That is, it does not call take' and drop'.)

14.3.2 List-combining operations: zip and unzip

Another useful function in the Prelude is zip (shown below as zip’) which takes
two lists and returns a list of pairs of the corresponding elements. That is, the
function fastens the lists together like a zipper. It’s definition is similar to zip’
given below:

zip' :: [a] -> [b] -> [(a,b)]
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys -- zip.1
zip' _ _ = [] -- zip.1

Function zip applies a tuple-forming operation to the corresponding elements of
two lists. It stops the recursion when either list argument becomes nil. Putting
the recursive case first enabled the two bases cases to be combined into one leg.

Example: zip [1,2,3] "oxford" =⇒ · · · [(1,’o’),(2,’x’),(3,’f’)]

Similarly, function unzip in the Prelude takes a list of pairs and returns a pair
of lists. It’s definition is similar to unzip' below.

unzip' :: [(a,b)] -> ([a],[b])
unzip' [] = ([],[])
unzip' ((x,y):ps) = (x:xs, y:ys)

where (xs,ys) = unzip' ps

The Prelude includes versions of zip and unzip that handle the tuple-formation
for triples. Librart Data.List includes functions for up to seven input lists:
zip4 · · · zip7 and unzip4 · · · unzip7.

8

14.4 Insertion Sort

Consider a function to sort the elements of a list into ascending order.

A list is ascending if every element is <= all of its successors in the list. Successor
means an element that occurs later in the list (i.e. away from the head). A list
is increasing if every element is < its successors. Similarly, a list is descending or
decreasing if every element is >= or >, respectively, its successors.

A simple algorithm to do this is insertion sort. To sort a non-empty list with
head x and tail xs, sort the tail xs and then insert the element x at the right
position in the result. To sort an empty list, just return it.

If we restrict the function to integer lists, we get the following Haskell functions:

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert x ys)

Insertion sort has a (worst and average case) time complexity of O(n2) where n
is the length of the input list. (Function isort requires n consecutive recursive
calls; each call uses function insert which itself requires on the order of n
recursive calls.)

Now suppose we want to generalize the sorting function and make it polymorphic.
We cannot just add a type parameter a and substitute it for Int everywhere.
Not all Haskell types can be compared on a total ordering (<, <=, >, and >= as
well).

We need to constrain the polymorphism to types in class Ord, as follows:

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert' x ys)

We could define insert' inside isort' and avoid the separate type param-
eterization. But insert is separately useful, so it is reasonable to leave it
external.

9

Consider the following questions:

• How do we know insert' terminates?

• What are the time and space complexities of insert'?

• How do we know isort' terminates?

• What are the time and space complexities of isort'?

14.5 What Next?

This and the preceding chapter explored use of first-order polymorphic functions
to process lists in Haskell.

The next three chapters examine higher-order function concepts in Haskell.

14.6 Exercises

1. Answer the following questions for the ++ operation defined in this chapter:

• Is ++ tail recursive?
• What is the space complexity?

1. Answer the following questions concerning the element selection operator
defined in this chapter.

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
• What are its time and space complexities?

2. Write a version of function splitAt' that makes only one pass over the
input list (that is, does not call take' and drop').

3. Answer the following questions for the isort' and insert' functions.

• How do we know insert' terminates?
• What are the time and space complexities of insert'?
• How do we know isort' terminates?
• What are the time and space complexities of isort'?

4. Hailstone functions.

a. (This part is repeated from a previous chapter.) Develop a function
hailstone to implement the following function:

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n

10

hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone 3
hailstone 10

hailstone 5
hailstone 16

hailstone 8
hailstone 4

hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

b. Write a Haskell function that computes the results of the
hailstone function for each element of a list of positive integers.
The value returned by the hailstone function for each element
of the list should be displayed.

c. Modify the hailstone function to return the function’s “path.”

That is, each application of this path function should return a list
of integers instead of a single integer. The list returned should con-
sist of the arguments of the successive calls to the hailstone func-
tion necessary to compute the result. For example, the hailstone
3 example above should return [3,10,5,16,8,4,2,1].

5. Number base conversion.

a. Write a Haskell function natToBin that takes a natural number and
returns its binary representation as a list of 0’s and 1’s with the
most significant digit at the head. For example, natToBin 23 returns
[1,0,1,1,1]. (Note: Prelude function rem returns the remainder
from dividing its first argument by its second. Enclosing the function
name in backquotes as in ‘rem‘ allows a two-argument function to
be applied in an infix form.)

b. Generalize natToBin to function natToBase that takes a base b

(b \geq 2) and a natural number and returns the base b representa-
tion of the natural number as a list of integer digits with the most
significant digit at the head. For example, natToBase 5 42 returns
[1,3,2].

c. Write Haskell function baseToNat, the inverse of the natToBase
function. For any base b (b \geq 2) and natural number n:

11

baseToNat b (natToBase b n) = n

6. Write a Haskell function merge that takes two increasing lists of integers
and merges them into a single increasing list (without any duplicate values).
A list is increasing if every element is less than (<) its successors. Successor
means an element that occurs later in the list, i.e. away from the head.
Generalize the function by making it polymorphic.

7. Design a module of set operations. Choose a Haskell representation for
sets. Implement functions to make sets from lists and vice versa, to insert
and delete elements from sets, to do set union, intersection, and difference,
to test for equality and subset relationships, to determine cardinality, and
so forth.

8. Bag module.

Mathematically, a bag (or multiset) is a function from some arbitrary set
of elements (the domain) to the set of nonnegative integers (the range).
We interpret the nonnegative integer as the number of occurrences of the
element in the bag. Zero means the element does not occur.

From another perspective, a bag is an unordered collection of elements.
Each element may occur one or more times in the bag. (It is like a set
except values can occur multiple times.)

For example, {| "time', "time", "and", "time", "again" |} is a
bag containing 5 strings. There are 3 occurrences of string "time" and 1
occurrence each of strings "and" and "again".

{| 11, 2, 3, 7, 5 |} is a bag of prime numbers. It is also a set because
each element occurs exactly once.

We can represent a bag in many ways in Haskell. Using lists, we could
represent a bag with a simple (unordered) list of elements, an ordered
list of elements, an unordered or an ordered list of tuples which pair an
element with the (nonzero) number of times it occurs, etc. A bag could
also be represented with other data structures such as a Map from library
Data.Map.

Choose some representation for polymorphic bags. You may assume that
the elements in the domain are totally ordered (i.e. are from a type that is
an instance of class Ord), but otherwise the elements can be of any type.

For example, if you use a list representation, you might define the type
synonym:

type Bag a = [a]

Develop a data abstraction (information-hiding) module that encapsulates
the representation of the data structure used to store the elements inside
the module.

12

The module should include the following public functions. This interface
should be the same even if you change the representation of the data
internally.

a. newBag returns a new bag with no elements (i.e. empty).

b. listToBag takes a list of elements and returns a bag containing
exactly those elements. The number of occurrences of an element in
the list and in the resulting bag is the same.

c. bagToList takes a bag and returns a list containing exactly the
elements occurring in the bag. The number of occurrences of an
element in the bag and in the resulting list is the same.

Note: It is not required that:

bagToList (listToBag xs) == xs

But it is required that both sides have the same numbers of the same
elements.

d. isEmpty takes a bag and returns True if the bag has no elements and
returns False otherwise.

e. isElem takes an element and a bag and returns True if the element
occurs in the bag and returns False otherwise.

f. size takes a bag and returns its cardinality (i.e. the total number of
occurrences of all elements).

g. occursBag takes an element and a bag and returns the number of
occurrences of the element in the bag.

h. insertElem takes an element and a bag and returns the bag with the
element inserted. Bag insertion either adds a single occurrence of a
new element to the bag or increases the number of occurrences of an
existing element by one.

i. deleteElem takes an element and a bag and returns the bag with
the element deleted. Bag deletion removes a single occurrence of an
element from the bag, decreases the number of occurrences of an
existing element by one, or does not change the bag if the element
does not occur.

j. eqBag takes two bags and returns True if the two bags are equal
(i.e. the same elements and same number of occurrences of each) and
returns False otherwise.

Note: If bagToList xs == bagToList ys, then eqBag xs ys. How-
ever, if eqBag xs ys, it is not required that bagToList xs == bagToList ys.

k. unionBag takes two bags and returns their bag union. The union of
bags X and Y contains all elements that occur in either X or Y; the

13

number of occurrences of an element in the union is the number in X
or in Y, whichever is greater.

l. intersectBag takes two bags and returns their bag intersection. The
intersection of bags X and Y contains all elements that occur in both
X and Y; the number of occurrences of an element in the intersection
is the number in X or in Y, whichever is lesser.

m. sumBag takes two bags and returns their bag sum. The sum of bags
X and Y contains all elements that occur in X or Y; the number of
occurrences of an element is the sum of the number of occurrences in
X and Y.

n. diffBag takes two bags and returns the bag difference, first argument
minus the second. The difference of bags X and Y contains all elements
of X that occur in Y fewer times; the number of occurrences of an
element in the difference is the number of occurrences in X minus the
number in Y.

o. subBag takes two bags and returns True if the first is a subbag of the
second and False otherwise. X is a subbag of Y if every element of
X occurs in Y at least as many times as it does in X.

p. bagToSet takes a bag and returns a list containing exactly the set of
elements contained in the bag. Each element occurring one or more
times in the bag will occur exactly once in the list returned.

9. Develop a bag module as described in the previous exercise, but use a
different internal representation than you used in the previous exercise.
The new module should have the same public interface as the previous
module.

10. Unbounded precision arithmetic module for natural numbers (i.e. nonneg-
ative integers). Do not use the builtin Integer type.

a. Define a type synonym BigNat to represent these unbounded precision
natural numbers as lists of Int. Let each element of the list denote a
decimal digit of the “big natural” number represented, with the least
significant digit at the head of the list and the remaining digits given
in order of increasing significance. For example, the integer value
22345678901 is represented as [1,0,9,8,7,6,5,4,3,2,2].

Use the following “canonical” representation:

the value 0 is represented by the list [0] and positive numbers by a
list without “leading” 0 digits (i.e. 126 is [6,2,1] not [6,2,1,0,0]).
You may use the nil list [] to denote an error value.

Define a Haskell module with basic arithmetic operations, including
the following functions. Make sure that BigNat values returned by
these functions are in canonical form.

14

• intToBig takes a nonnegative Int and returns the BigNat with
the same value.

• strToBig takes a String containing the value of the number
in the “usual” format (i.e. decimal digits, left to right in order
of decreasing significance with zero or more leading spaces, but
with no spaces or punctuation embedded within the number) and
returns the BigNat with the same value.

• bigToStr takes a BigNat and returns a String containing the
value of the number in the “usual” format (i.e. left to right in
order of decreasing significance with no spaces or punctuation).

• bigComp takes two BigNats and returns the Int value -1 if the
value of the first is less than the value of the second, the value 0
if they are equal, and the value 1 if the first is greater than the
second.

• bigAdd takes two BigNat s and returns their sum as a BigNat.

• bigSub takes two BigNat s and returns their difference as a
BigNat, first argument minus the second.

• bigMult takes two BigNats and returns their product as a
BigNat.

b. Use the package to generate a table of factorials for the naturals 0
through 25. Print the values from the table in two right-justified
columns, with the number on the left and its factorial on the right.
(Allow about 30 columns for 25!.)

c. Use the package to generate a table of Fibonacci numbers for the
naturals 0 through 50.

d. Generalize the package to handle signed integers. Add the following
new function:

• bigNeg returns the negation of its BigNat argument.

e. Add the following functions to the package:

• bigDiv takes two BigNats and returns, as a BigNat, the quotient
from dividing the first argument by the second.

• bigRem takes two BigNats and returns, as a BigNat, the remain-
der from dividing the first argument by the second.

11. Define the following set of text-justification functions. You may want to
use Prelude functions like take, drop, and length.

• spaces’ n returns a string of length n containing only space charac-
ters (i.e. the character ’ ’).

15

• left’ n xs returns a string of length n in which the string xs begins
at the head (i.e. left end).

Examples: left’ 3 "ab" yields "ab "; left’ 3 "abcd" yields
"abc".

• right’ n xs returns a string of length n in which the string xs ends
at the tail (i.e. right end).

Examples: right’ 3 bc yields bc; right’ 3 abcd yields bcd.

• center’ n xs returns a string of length n in which the string xs is
approximately centered.

Example: center’ 4 "bc" yields " bc ".

12. Consider simple mathematical expressions consisting of integer constants,
variable names, parentheses, and the binary operators +, -, *, and /. For
the purposes of this exercise, an expression is a string that satisfies the
following (extended) BNF grammar and lexical conventions:

• The characters in an input string are examined left to right to form
“lexical tokens”. The tokens of the expression “language” consist of
addOps, mulOps,identifiers, numbers, and left and right parentheses.

• An expression may contain space characters at any position except
within a lexical token.

• An addOp token is either a “+” or a “-”; a mulOp token is either a
“*” or a “/”.

• An identifier q is a string of one or more contiguous characters such
that the leftmost character is a letter and the remaining characters
are either letters, digits, or underscore characters.

Examples: “Hi1”, “lo23_1”, “this_is_2_long”

• A number is a string of one or more contiguous characters such that
all (including the leftmost) are digits.

Examples: “1”, “23456711”

• All identifier and number tokens extend as far to the right as possible.
For example, consider the string

“A123 12B3+2)”. (Note the space and right parenthesis characters).
This string consists of the six tokens “A123”, “12”, “B3”, “+”, “2”,
and “)”.

Define a Haskell function valid that takes a String and returns True if
the string is an expression as described above and returns False otherwise.

Hints:

16

• If you need to return more than one value from a function, you can do
so by returning a tuple of those values. This tuple can be decomposed
by Prelude functions such as fst and snd.

• Use of the where or let features can simplify many functions. You
may find Prelude functions such as span, isSpace, isDigit, isAlpha,
and isAlphanum useful.

• You may want to consider organizing your program as a simple
recursive descent recognizer for the expression language.

13. Extend the mathematical expression recognizer of the previous exercise
to evaluate integer expressions with the given syntax. The four binary
operations have their usual meanings.

Define a function eval e st that evaluates expression e using symbol
table st. If the expression e is syntactically valid, eval returns a pair
(True,val) where val is the value of e. If e is not valid, eval returns
(False,0).

The symbol table consists of a list of pairs, in which the first component
of a pair is the variable name (a string) and the second is the variable’s
value (an integer).

Example: eval "(2+x) * y" [("y",3),("a",10),("x",8)] yields
(True,30).

14.7 Acknowledgements

In Summer 2016, I adapted and revised much of this work from the following
sources:

• chapter 5 of my Notes on Functional Programming with Haskell [Cunning-
ham 2014] which is influenced by [Bird 1988] (later editions are [Bird 1998]
and [Bird 2015])

• my notes on Functional Data Structures (Scala) [Cunningham 2016] which
are based, in part, on chapter 3 of the book Functional Programming in
Scala [Chiusano 2015].

In 2017, I continued to develop this work as Chapter 4, List Programming, of
my 2017 Haskell-based programming languages textbook.

In Summer 2018, I divided the previous List Programming chapter into two
chapters in the 2018 version of the textbook, now titled Exploring Languages
with Interpreters and Functional Programming. Previous sections 4.1-4.4 became
the basis for new Chapter 13, List Programming, and previous sections 4.5-
4.8 became the basis for Chapter 14, Infix Operators and List Programming
Examples (this chapter).

17

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

14.8 References

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Bird 1998]: Richard Bird. Introduction to Functional Programming using
Haskell, Second Edition, Prentice Hall, 1998.

[Bird 2015]: Richard Bird. Thinking Functionally with Haskell, Second Edition,
Cambridge University Press, 2015.

[Chiusano 2015]]: Paul Chiusano and Runar Bjarnason, Functional Program-
ming in Scala, Manning, 2015.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Cunningham 2016]: H. Conrad Cunningham, Functional Data Structures
(Scala), 2016. (Lecture notes based, in part, on chapter 3 [Chiusano 2015].)

14.9 Terms and Concepts

Binary operation, infix operation, properties of operators (associative, identity,
zero, inverse, distribution), precedence (left, right, free binding).

18

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci658/notes/FPS03/FunctionalDS.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/FPS03/FunctionalDS.html

	Infix Operators and List Examples
	Chapter Introduction
	Using Infix Operations
	Appending two lists: ++
	Properties of operations
	Element selection: !!
	Reversing a list: rev
	Tail recursive reverse

	More Useful List Functions
	Another list-breaking function: splitAt
	List-combining operations: zip and unzip

	Insertion Sort
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

