Exploring Languages with Interpreters
and Functional Programming

Chapter 9

H. Conrad Cunningham

5 August 2018

Contents

9 Recursion Styles and Efficiency 2
 9.1 Chapter Introduction . 2
 9.2 Linear and Nonlinear Recursion 2
 9.2.1 Linear recursion . 2
 9.2.2 Nonlinear recursion . 3
 9.3 Backward and Forward Recursion 4
 9.3.1 Backward recursion . 4
 9.3.2 Forward recursion . 4
 9.3.3 Tail recursion . 5
 9.4 Logarithmic Recursion . 7
 9.5 Local Definitions . 9
 9.6 Using Other Languages . 10
 9.6.1 Scheme . 10
 9.6.2 Elixir . 12
 9.6.3 Scala . 13
 9.6.4 Lua . 14
 9.6.5 Elm . 16
 9.7 What Next? . 17
 9.8 Exercises . 17
 9.9 Acknowledgements . 19
 9.10 References . 19
 9.11 Terms and Concepts . 20

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
Browser Advisory: The HTML version of this textbook requires a browser that supports the display of MathML. A good choice as of August 2018 is a recent version of Firefox from Mozilla.
9 Recursion Styles and Efficiency

9.1 Chapter Introduction

This chapter introduces basic recursive programming styles and examines issues of efficiency, termination, and correctness. It builds on the substitution model from the previous chapter, but uses the model informally.

As in the previous chapters, this chapter focuses on use of first-order functions and primitive data types.

The goals of the chapter are to:

- explore several recursive programming styles—linear and nonlinear, backward and forward, tail, and logarithmic—and their implementation using Haskell
- analyze Haskell functions to determine under what conditions they terminate with the correct result and how efficient they are
- explore methods for developing recursive Haskell programs that terminate with the correct result and are efficient in both time and space usage
- compare the basic functional programming syntax of Haskell with that in other languages

The Haskell modules for the functions in this chapter are defined in the following source files:

- the factorial functions in Factorial.hs (from Chapter 4)
- the other Haskell functions in RecursionStyles.hs (with a simple test script in file TestRecursionStyles.hs)

9.2 Linear and Nonlinear Recursion

Given the substitution model described in Chapter 8, we can now consider efficiency and termination in the design of recursive Haskell functions.

In this section, we examine the concepts of linear and nonlinear recursion. The following two sections examine other styles.

9.2.1 Linear recursion

A function definition is linear recursive if at most one recursive application of the function occurs in any leg of the definition (i.e. along any path from an entry to a return). The various argument patterns and guards and the branches of the conditional expression if introduce paths.
The definition of the function \texttt{fact4} repeated below is linear recursive because the expression in the second leg of the definition (i.e. \texttt{n \times fact4 (n-1)}) involves a single recursive application. The other leg is nonrecursive; it is the base case of the recursive definition.

\begin{verbatim}
fact4 :: Int -> Int
fact4 n
 | n == 0 = 1
 | n >= 1 = n * fact4 (n-1)
\end{verbatim}

What are the precondition and postcondition for \texttt{fact4 n}?

As discussed in Chapter 6, we must require a precondition of \texttt{n >= 0} to avoid abnormal termination. When the precondition holds, the postcondition is:

\texttt{fact4 n = fact'(n)}

What are the time and space complexities of \texttt{fact4 n}?

Function \texttt{fact4} recurses to a depth of \texttt{n}. As we in for \texttt{fact1} in the previous chapter, it has \textit{time complexity} \(O(n)\), if we count either the recursive calls or the multiplication at each level. The \textit{space complexity} is also \(O(n)\) because a new runtime stack frame is needed for each recursive call.

How do we know that function \texttt{fact4 n} terminates?

For a call \texttt{fact4 n} with \texttt{n > 0}, the argument of the recursive application always decreases to \texttt{n - 1}. Because the argument always decreases in integer steps, it must eventually reach 0 and, hence, terminate in the first leg of the definition.

9.2.2 Nonlinear recursion

A \textit{nonlinear recursion} is a recursive function in which the evaluation of some leg requires more than one recursive application. For example, the naive Fibonacci number function \texttt{fib} shown below has two recursive applications in its third leg.

When we apply this function to a nonnegative integer argument greater than 1, we generate a pattern of recursive applications that has the “shape” of a binary tree. Some call this a \textit{tree recursion}.

\begin{verbatim}
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)
\end{verbatim}

What are the precondition and postcondition for \texttt{fib n}?

For \texttt{fib n}, the precondition \texttt{n >= 0} to ensure that the function is defined. When called with the precondition satisfied, the postcondition is:

\texttt{fib n = Fibonacci(n)}
How do we know that $\text{fib } n$ terminates?

For the recursive case $n \geq 2$, the two recursive calls have arguments that are 1 or 2 less than n. Thus every call gets closer to one of the two base cases.

What are the time and space complexities of $\text{fib } n$?

Function fib is combinatorially explosive, having a time complexity $O(\text{fib } n)$. The space complexity is $O(n)$ because a new runtime stack frame is needed for each recursive call and the calls recurse to a depth of n.

An advantage of a linear recursion over a nonlinear one is that a linear recursion can be compiled into a loop in a straightforward manner. Converting a nonlinear recursion to a loop is, in general, difficult.

9.3 Backward and Forward Recursion

In this section, we examine the concepts of backward and forward recursion.

9.3.1 Backward recursion

A function definition is backward recursive if the recursive application is embedded within another expression. During execution, the program must complete the evaluation of the expression after the recursive call returns. Thus, the program must preserve sufficient information from the outer call’s environment to complete the evaluation.

The definition for the function fact4 above is backward recursive because the recursive application $\text{fact4}(n-1)$ in the second leg is embedded within the expression $n \ast \text{fact4}(n-1)$. During execution, the multiplication must be done after return. The program must “remember” (at least) the value of parameter n for that call.

A compiler can translate a backward linear recursion into a loop, but the translation may require the use of a stack to store the program’s state (i.e. the values of the variables and execution location) needed to complete the evaluation of the expression.

Often when we design an algorithm, the first functions we come up with are backward recursive. They often correspond directly to a convenient recurrence relation. It is often useful to convert the function into an equivalent one that evaluates more efficiently.

9.3.2 Forward recursion

A function definition is forward recursive if the recursive application is not embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists. During execution, significant work is done as the recursive calls are made (e.g. in the argument list of the recursive call).

The definition for the auxiliary function factIter below has two integer arguments. The first argument is the number whose factorial is to be computed. The second argument accumulates the product incrementally as recursive calls are made.

The recursive application factIter (n-1) (n*r) in the second leg is on the outside of the expression evaluated for return. The other leg of factIter and fact6 itself are nonrecursive.

9.3.3 Tail recursion

A function definition is tail recursive if it is both forward recursive and linear recursive. In a tail recursion, the last action performed before the return is a recursive call.

The definition of the function factIter above is thus tail recursive.

Tail recursive definitions are relatively straightforward to compile into efficient loops. There is no need to save the states of unevaluated expressions for higher
level calls; the result of a recursive call can be returned directly as the caller’s result. This is sometimes called tail call optimization (or “tail call elimination” or “proper tail calls”).

In converting the backward recursive function \(\text{fact4} \) to a tail recursive auxiliary function, we added the parameter \(r \) to \(\text{factIter} \). This parameter is sometimes called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of the computation incrementally for return when the recursion terminates. In \(\text{factIter} \), this “state” passed from one “iteration” to the next enables us to convert a backward recursive function to an “equivalent” tail recursive one.

Function \(\text{factIter} \) defines a more general function than \(\text{fact4} \). It computes a factorial when we initialize the accumulator to 1, but it can compute some multiple of the factorial if we initialize the accumulator to another value. However, the application of \(\text{factIter} \) in \(\text{fact6} \) gives the initial value of 1 needed for factorial.

Consider auxiliary function \(\text{fibIter} \) used by function \(\text{fib2} \) below. This function adds two “accumulating parameters” to the backward nonlinear recursive function \(\text{fib} \) to convert the nonlinear (tree) recursion into a tail recursion. This technique works for Fibonacci numbers, but the same technique will not work in all cases.

```haskell
fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1
where
  fibIter 0 p q = p
  fibIter m p q | m > 0 = fibIter (m-1) q (p+q)
```

Here we use type inference for \(\text{fibIter} \). Function \(\text{fibIter} \) could be declared

```haskell
fibIter :: Int -> Int -> Int -> Int
```

but it was not necessary because Haskell can infer the type from the types involved in its defining expressions.

What are the precondition and postcondition for \(\text{fibIter} \ n \ p \ q \)?

To avoid abnormal termination, \(\text{fibIter} \ n \ p \ q \) requires \(n \geq 0 \). When the precondition holds, its postcondition is:

\[
\text{fibIter} \ n \ p \ q = \text{Fibonacci}(n) + (p + q - 1)
\]

If called with \(p \) and \(q \) set to 0 and 1, respectively, then \(\text{fibIter} \) returns:

\[
\text{Fibonacci}(n)
\]

How do we know that \(\text{fibIter} \ n \ p \ q \) terminates for \(n \geq 0 \)?

The recursive leg of \(\text{fibIter} \ n \ p \ q \) is only evaluated when \(n > 0 \). On the recursive call, that argument decreases by 1. So eventually the computation reaches the base case.
What are the time and space complexities of \texttt{fibIter}?

Function \texttt{fibIter} has a time complexity of $O(n)$ in contrast to $O(fib(n))$ for \texttt{fib}. This algorithmic speedup results from the replacement of the very expensive operation \texttt{fib(n-1) + fib(n-2)} at each level in \texttt{fib} by the inexpensive operation \texttt{p + q} (i.e. addition of two numbers) in \texttt{fibIter}.

Without tail call optimization, \texttt{fibIter n p q} has space complexity of $O(n)$. However, tail call optimization (including an innermost reduction on the \texttt{q} argument) can convert the recursion to a loop, giving $O(1)$ space complexity.

When combined with tail-call optimization and innermost reduction of strict arguments, a tail recursive function may be more efficient than the equivalent backward recursive function. However, the backward recursive function is often easier to understand and, as we see in a later chapter, to reason about.

9.4 Logarithmic Recursion

We can define the exponentiation operation $^\wedge$ in terms of multiplication as follows for integers b and $n \geq 0$:

$$b^n = \prod_{i=1}^{n} b$$

A backward recursive exponentiation function \texttt{expt}, shown below in Haskell, raises a number to a nonnegative integer power.

```haskell
expt :: Integer -> Integer -> Integer
expt b 0 = 1
expt b n |
  | n > 0 = b * expt b (n-1) -- backward rec
  | otherwise = error (
    "expt undefined for negative exponent "
    ++ show n )
```

Here we use the unbounded integer type \texttt{Integer} for the parameters and return value.

Note that the recursive call of \texttt{expt} does not change the value of the parameter \texttt{b}.

Consider the following questions relative to \texttt{expt}.

- What are the precondition and postcondition for \texttt{expt b n}?
- How do we know that \texttt{expt b n} terminates?
- What are the time and space complexities of \texttt{expt b n} (ignoring any additional costs of processing the unbounded integer type)?

We can define a tail recursive auxiliary function \texttt{exptIter} by adding a new parameter to accumulate the value of the exponentiation incrementally. We can
define \texttt{exptIter} within a function \texttt{expt2}, taking advantage of the fact that the base \texttt{b} does not change. This is shown below.

\begin{verbatim}
expt2 :: Integer \rightarrow Integer \rightarrow Integer
expt2 _ _ | n < 0 = error ("expt2 undefined for negative exponent " ++ show n)
expt2 b n = exptIter n 1
where exptIter 0 p = p
 exptIter m p = exptIter (m-1) (b*p) -- tail rec
\end{verbatim}

Consider the following questions relative to \texttt{expt2}.

- What are the precondition and postcondition for \texttt{exptIter n p}?
- How do we know that \texttt{exptIter n p} terminates?
- What are the time and space complexities of \texttt{exptIter n p}?

The exponentiation function can be made computationally more efficient by squaring the intermediate values instead of iteratively multiplying. We observe that:

\begin{verbatim}
b^n = b^{n/2}^2 \quad \text{if } n \text{ is even}
b^n = b \times b^{n-1} \quad \text{if } n \text{ is odd}
\end{verbatim}

Function \texttt{expt3} below incorporates this observation into an improved algorithm. Its time complexity is \(O(\log(n))\) and space complexity is \(O(\log(n))\).

\begin{verbatim}
expt3 :: Integer \rightarrow Integer \rightarrow Integer
expt3 _ _ | n < 0 = error ("expt3 undefined for negative exponent " ++ show n)
expt3 b n = exptAux n
where exptAux 0 = 1
 exptAux n
| even n = \texttt{let} \ exp = exptAux (n `div` 2) \texttt{in} \exp \ast \exp -- backward rec
| otherwise = b \ast exptAux (n-1) -- backward rec
\end{verbatim}

Here we use two features of Haskell we have not used in the previous examples.

- Boolean function \texttt{even} returns \texttt{True} if and only if its integer argument is an even number. Similarly, \texttt{odd} returns \texttt{True} when its argument is an odd number.
- The \texttt{let} clause introduces \texttt{exp} as a local definition within the expression following \texttt{in} keyword, that is, within \texttt{exp \ast exp}.

The \texttt{let} feature allows us to introduce new definitions in a bottom-up manner—first defining a symbol and then using it.

Consider the following questions relative to \texttt{expt3}.
• What are the precondition and postcondition \texttt{expt3 b n}?
• How do we know that \texttt{exptAux n} terminates?
• What are the time and space complexities of \texttt{exptAux n}?

9.5 Local Definitions

We have used two different language features to add local definitions to Haskell functions: \texttt{let} and \texttt{where}.

The \texttt{let} expression is useful whenever a nested set of definitions is required. It has the following syntax:

\begin{center}
\texttt{let local_definitions in expression}
\end{center}

A \texttt{let} may be used anywhere that an expression my appear in a Haskell program.

For example, consider a function \texttt{f} that takes a list of integers and returns a list of their squares incremented by one:

\begin{verbatim}
f :: [Int] -> [Int]
f [] = []
f xs = let square a = a * a
 one = 1
 (y:ys) = xs
 in (square y + one) : f ys
\end{verbatim}

• \texttt{square} represents a function of one variable.
• \texttt{one} represents a constant, that is, a function of zero variables.
• \texttt{(y:ys)} represents a pattern match binding against argument \texttt{xs} of \texttt{f}.
• Reference to \texttt{y} or \texttt{ys} when argument \texttt{xs} of \texttt{f} is nil results in an error.
• Local definitions \texttt{square}, \texttt{one}, \texttt{y}, and \texttt{ys} all come into scope simultaneously; their scope is the expression following the \texttt{in} keyword.
• Local definitions may access identifiers in outer scopes (e.g. \texttt{xs} in definition of \texttt{(y:ys)}) and have definitions nested within themselves.
• Local definitions may be recursive and call each other.

The \texttt{let} clause introduces symbols in a bottom-up manner: it introduces symbols before they are used.

The \texttt{where} clause is similar semantically, but it introduces symbols in a top-down manner: the symbols are used and then defined in a \texttt{where} that follows.

The \texttt{where} clause is more versatile than the \texttt{let}. It allows the scope of local definitions to span over several guarded equations while a \texttt{let}'s scope is restricted to the right-hand side of one equation.
For example, consider the definition:

\[
\begin{align*}
g :: \text{Int} \to \text{Int} \\
g \ n & | \ \text{check3} == x = x \\
| \ \text{check3} == y = y \\
| \ \text{check3} == z = z * z \\
\text{where} \ \text{check3} = n \mod 3 \\
x &= 0 \\
y &= 1 \\
z &= 2
\end{align*}
\]

- The scope of this \texttt{where} clause is over all three guards and their respective right-hand sides. (Note that the \texttt{where} begins in the same column as the = rather than to the right as in \texttt{rev`}.)

- Note the use of the modulo function \texttt{mod} as an infix operator. The backquotes (‘) around a function name denotes the infix use of the function.

In addition to making definitions easier to understand, local definitions can increase execution efficiency in some cases. A local definition may introduce a component into the expression graph that is shared among multiple branches. Haskell uses graph reduction, so any shared component is evaluated once and then replaced by its value for subsequent accesses.

The local variable \texttt{check3} introduces a component shared among all three legs. It is evaluated once for each call of \texttt{g}.

9.6 Using Other Languages

In this chapter, we have expressed the functions in Haskell, but they are adapted from the classic textbook \textit{Structure and Interpretation of Computer Programs} (SICP) [Abelman 1996], which uses Scheme.

To compare languages, let’s examine the \texttt{expt3} function in Scheme and other languages.

9.6.1 Scheme

Below is the Scheme language program for exponentiation similar to to \texttt{expt3} (called \texttt{fast-expt} in SICP [Abelman 1996]). Scheme, a dialect of Lisp, is an impure, eagerly evaluated functional language with dynamic typing.

\[
\begin{align*}
(\text{define} \ (\text{expt3} \ b \ n) \\
(\text{cond} \\
(\text{(<} \ n \ 0) \ (\text{error} \ \text{expt3} \ \text{"Called with negative exponent"})) \\
(\text{else} \ \text{(expt_aux} \ b \ n)))))
\end{align*}
\]
(define (expt_aux b n)
 (cond
 ((= n 0) 1)
 ((even? n) (square (expt3 b (/ n 2))))
 (else (* b (expt3 b (- n 1))))))

(define (square x) (* x x))

(define (even? n) (= (remainder n 2) 0))

Scheme (and Lisp) represents both data and programs as s-expressions (nested list structures) enclosed in balanced parentheses; that is, Scheme is *homoiconic*. In the case of executable expressions, the first element of the list may be operator. For example, consider:

(define (square x) (* x x))

The *define* operator takes two arguments:

- a symbol being defined, in this case a function signature (*square x*) for a function named *square* with one formal parameter named *x*
- an expression defining the value of the symbol, in this case the expression (*x x*) that multiplies formal parameter *x* by itself and returns the result

The *define* operator has the side effect of adding the definition of the symbol to the environment. That is, *square* is introduced as a one argument function with the value denoted by the expression (*x x*).

The conditional expression *cond* gives an if-then-elseif expression that evaluates a sequence of predicates until one evaluates to “true” value and then returns the paired expression. The *else* at the end always evaluates to “true”.

The above Scheme code defines the functions *square*, the exponentiation function *expt3*, and the logical predicate *even?*. It uses the primitive Scheme functions -, *, /, *remainder*, and = (equality).

We can evaluate the Scheme expression (*expt 2 10*) using a Scheme interpreter (as I did using DrRacket [Racket 2018]) and get the value 1024.

Although Haskell and Scheme are different in many ways—algebraic versus s-expression syntax, static versus dynamic typing, lazy versus eager evaluation (by default), always pure versus sometimes impure functions, etc.—the fundamental techniques we have examined in Haskell still apply to Scheme and other languages. We can use a substitution model, consider preconditions and termination, use tail recursion, and take advantage of first-class and higher-order functions.

Of course, each language offers a unique combination of features that can be exploited in our programs. For example, Scheme programmers can leverage its runtime flexibility and powerful macro system; Haskell programmers can
build on its safe type system, algebraic data types, pattern matching, and other features.

The Racket Scheme [Racket 2018] code for this subsection is in file `expt3.rkt`.

Let’s now consider other languages.

9.6.2 Elixir

The language Elixir [Elixir 2018] is a relatively new language that executes on the Erlang platform (called the Erlang Virtual Machine or BEAM). Elixir is an eagerly evaluated functional language with strong support for message-passing concurrent programming. It is dynamically typed and is mostly pure except for input/output. It has pattern-matching features similar to Haskell.

We can render the `expt3` program into a sequential Elixir program as follows.

```elixir
def expt3(b,n) when is_number(b) and is_integer(n) and n >= 0 do
  exptAux(b,n)
end

defp exptAux(_,0) do 1 end

defp exptAux(b,n) do
  if rem(n,2) == 0 do # i.e. even
    exp = exptAux(b,div(n,2))
    exp * exp # backward rec
  else # i.e. odd
    b * exptAux(b,n-1) # backward rec
  end
end
```

This code occurs within an Elixir module. The `def` statement defines a function that is exported from the module while `defp` defines a function that is private to the module (i.e. not exported).

A definition allows the addition of guard clauses following `when` (although they cannot include user-defined function calls because of restrictions of the Erlang VM). In function `expt3`, we use guards to do some type checking in this dynamically typed language and to ensure that the exponent is nonnegative.

Private function `exptAux` has two functions bodies. As in Haskell, the body is selected using pattern matching proceeding from top to bottom in the module. The first function body with the header `exptAux(_,0)` matches all cases in which the second argument is 0. All other situations match the second header `exptAux(b,n)` binding parameters `b` and `n` to the argument values.

The functions `div` and `rem` denote integer division and remainder, respectively.
The Elixir = operator is not an assignment as in imperative languages. It is a pattern-match statement with an effect similar to let in the Haskell function.

Above the expression

\[
\text{exp} = \text{exptAux}(b, \text{div}(n, 2))
\]
evaluates the recursive call and then binds the result to new local variable named exp. This value is used in the next statement to compute the return value \(\text{exp} \ast \text{exp} \).

Again, although there are significant differences between Haskell and Elixir, the basic thinking and programming styles learned for Haskell are also useful in Elixir (or Erlang). These styles are also key to use of their concurrent programming features.

The Elixir [Elixir 2018] code for this subsection is in file expt.ex.

9.6.3 Scala

The language Scala [Scala 2018] is a hybrid functional/object-oriented language that executes on the Java platform (i.e. on the Java Virtual Machine or JVM). Scala is an eagerly evaluated language. It allows functions to be written in a mostly pure manner, but it allows intermixing of functional, imperative, and object-oriented features. It has a relatively complex static type system similar to Java, but it supports type inference (although weaker than that of Haskell). It interoperates with Java and other languages on the JVM.

We can render the exponentiation function \(\text{expt3} \) into a functional Scala program as shown below. This uses the Java/Scala extended integer type \texttt{BigInt} for the base and return values.

```scala
def expt3(b: BigInt, n: Int): BigInt = {
  def exptAux(n1: Int): BigInt = // b known from outer
    n1 match {
    case 0          => 1
    case m if (m % 2 == 0) => // i.e. even
      val exp = exptAux(m/2)
      exp * exp       // backward rec
    case m          => // i.e. odd
      b * exptAux(m-1)  // backward rec
  }
  if (n >= 0)
    exptAux(n)
  else
    b
}
```
The body of function `expt3` uses an `if-else` expression to ensure that the exponent is non-negative and then calls `exptAux` to do the work.

Function `expt3` encloses auxiliary function `exptAux`. For the latter, the parameters of `expt3` are in scope. For example, `exptAux` uses `b` from `expt3` as a constant.

Scala supports pattern matching using an explicit `match` operator in the form:

```
selector match { alternatives }
```

It evaluates the `selector` expression and then choses the first `alternative` pattern that matches this value, proceeding top to bottom, left to right. We write the alternative as

```
case pattern => expression
```
or with a guard as:

```
case pattern if boolean_expression => expression
```

The `expression` may be a sequence of expressions. The value returned is the value of the last expression evaluated.

In this example, the `match` in `exptAux` could easily be replaced by an `if-else` expression because it does not depend upon complex pattern matching.

In Haskell, functions are automatically curried. In Scala, we could alternatively define `expt3` in curried form using two argument lists as follows:

```
def expt3(b: BigInt)(n: Int): BigInt = ...
```

Again, we can use most of the functional programming methods we learn for Haskell in Scala. Scala has a few advantages over Haskell such as the ability to program in a multiparadigm style and interoperate with Java. However, Scala tends to be more complex and verbose than Haskell. Some features such as type inference and tail recursion are limited by Scala’s need to operate on the JVM.

The Scala [Scala 2018] code for this subsection is in file `exptBigInt2.scala`.

9.6.4 Lua

Lua [Lua 2018] is a minimalistic, dynamically typed, imperative language designed to be embedded as a scripting language within other programs, such as computer games. It interoperates well with standard C and C++ programs.

We can render the exponentiation function `expt3` into a functional Lua program as shown below.
local function expt3(b, n)

local function expt_aux(n) -- b known from outer
 if n == 0 then
 return 1
 elseif n % 2 == 0 then -- i.e. even
 local exp = expt_aux(n/2)
 return exp * exp -- backward recursion
 else
 return b * expt_aux(n-1) -- backward recursion
 end
end

if type(b) == "number" and type(n) == "number" and n >= 0 and n == math.floor(n) then
 return expt_aux(n, 1)
else
 error("Invalid arguments to expt: " ..
 tostring(b) .. "^" .. tostring(n))
end
end

Like the Scala version, we define the auxiliary function `expt_aux` inside of function `expt3`, limiting its scope to the outer function.

This function uses with Lua version 5.2. In this and earlier versions, the only numbers are IEEE standard floating point. As in the Elixir version, we make sure the arguments are numbers with the exponent argument being nonnegative. Given that the numbers are floating point, the function also ensures that the exponent is an integer.

Auxiliary function `expt_aux` does the computational work. It differentiates among the three cases using an `if - elseif - else` structure. Lua does not have a switch statement or pattern matching capability.

Lua is not normally considered a functional language, but it has a number of features that support functional programming—in particular, first-class and higher order functions and tail call optimization.

In many ways, Lua is semantically similar to Scheme, but instead of having the Lisp-like hierarchical list as its central data structure, Lua provides an efficient, mutable, associative data structure called a table (somewhat like a hash table or map in other languages). Lua does not support Scheme-style macros in the standard language.

Unlike Haskell, Elixir, and Scala, Lua does not have built-in immutable data structures or pattern matching. Lua programs tend to be relatively verbose. So some of the usual programming idioms from functional languages do not fit Lua well.
9.6.5 Elm

Elm [Elm 2018] is a new functional language intended primarily for *client-side* Web programming. It is currently compiled into JavaScript, so some aspects are limited by the target execution environment. For example, Elm’s basic types are those of JavaScript. So integers are actually implemented as floating point numbers.

Elm has a syntax and semantics that is similar to, but simpler than, Haskell. It has a Haskell-like *let* construct for local definitions but not a *where* construct. It also limits pattern matching to structured types.

Below is an Elm implementation of an exponentiation function similar to the Haskell `expt3` function, except it is limited to the standard integers `Int`. Operator `//` denotes the integer division operation and `%` is remainder operator.

```elm
expt3 : Int -> Int -> Int
expt3 b n =
    let
        exptAux m =
            if m == 0 then
                1
            else if m % 2 == 0 then
                let
                    exp = exptAux (m // 2)
                in
                    exp * exp -- backward rec
            else
                b * exptAux (m-1) -- backward rec
            in
            if n < 0 then
                0 -- error?
            else
                exptAux n
```

One semantic difference between Elm and Haskell is that Elm functions must be total—that is, return a result for every possible input. Thus, this simple function extends the definition of `expt3` to return 0 for a negative power. An alternative would be to have `expt3` return a `Maybe Int` type instead of `Int`. We will examine this feature in Haskell later.

The Elm [Elm 2018] code for this subsection is in file `expt.elm`.
9.7 What Next?

As we have seen in this chapter, we can develop efficient programs using functional programming and the Haskell language. These may require use to think about problems and programming a bit differently than we might in an imperative or object-oriented language. However, the techniques we learn for Haskell are usually applicable whenever we use the functional paradigm in any language. The functional way of thinking can also improve our programming in more traditional imperative and object-oriented languages.

In the next chapter, we examine simple input/output concepts in Haskell. In the two chapters after that, we examine software testing concepts.

In subsequent chapters, we explore the list data structure and additional programming techniques.

9.8 Exercises

1. Show the reduction of the expression `fib 4` using the substitution model. (This is repeated from the previous chapter.)

2. Show the reduction of the expression `expt 4 3` using the substitution model.

3. Answer the questions (precondition, postcondition, termination, time complexity, space complexity) in the subsection about `expt`.

4. Answer the questions in the subsection about `exptAux`.

5. Answer the questions in the subsection about `expt`.

6. Develop a recursive function in Java, C#, Python 3, JavaScript, or C++ that has the same functionality as `expt3`.

7. Develop an iterative, imperative program in Java, C#, Python 3, JavaScript, or C++ that has the same functionality as `expt3`.

For each of the following exercises, develop a Haskell program. For each function, informally argue that it terminates and give Big-O time and space complexities. Also identify any preconditions necessary to guarantee correct operation. Take care that special cases and error conditions are handled in a reasonable way.

7. Develop a backward recursive function `sumTo` such that `sumTo n` computes the sum of the integers from 1 to n for \(n \geq 0 \).

8. Develop a tail recursive function `sumTo'` such that `sumTo' n` computes the sum of the integers from 1 to n for \(n \geq 0 \).

9. Develop a backward recursive function `sumFromTo` such that `sumFromTo m n` computes the sum of the integers from m to n for \(m \leq n \).
10. Develop a tail recursive function `sumFromTo m n` such that `sumFromTo m n` computes the sum of the integers from `m` to `n` for `m <= n`.

11. Suppose we have functions `succ` (successor) and `pred` (predecessor) defined as follows:

   ```haskell
   succ, pred :: Int -> Int
   succ n = n + 1
   pred n = n - 1
   ```

 Develop a function `add` such that `add m n` computes `m + n`. Function `add` cannot use the integer addition or subtraction operations but can use the `succ` and `pred` functions above.

12. Develop a function `acker` to compute Ackermann’s function, which is function `A` defined as follows:

   ```latex
   \begin{align*}
   A(m, n) &= n + 1, & \text{if } m = 0 \\
   A(m, n) &= A(m - 1, 1), & \text{if } m > 0 \text{ and } n = 0 \\
   A(m, n) &= A(m - 1, A(m, m - 1)), & \text{if } m > 0 \text{ and } n > 0 \\
   \end{align*}
   ```

13. Develop a function `hailstone` to implement the following function:

   ```haskell
   hailstone :: Int -> Int
   hailstone 1 = 1
   hailstone n = hailstone (n/2), if n > 1, even n
   hailstone n = hailstone (3 * n + 1), if n > 1, odd n
   ```

 Note that an application of the `hailstone` function to the argument 3 would result in the following “sequence” of “calls” and would ultimately return the result 1.

   ```haskell
   hailstone 3
   hailstone 10
   hailstone 5
   hailstone 16
   hailstone 8
   hailstone 4
   hailstone 2
   hailstone 1
   ```

 For further thought: What is the domain of the `hailstone` function?

14. Develop the exponentiation function `expt4` that is similar to `expt3` but is tail recursive.

15. Develop the following group of functions.

 - `test` such that `test a b c` is `True` if and only if `a <= b` and no
integer is the range from \(a \) to \(b \) inclusive is divisible by \(c \).

- **prime** such that \texttt{prime n} is True if and only if \(n \) is a prime integer.
- **nextPrime** such that \texttt{nextPrime n} returns the next prime integer greater than \(n \)

16. Develop function \texttt{binom} to compute *binomial coefficients*. That is, \texttt{binom n k} returns \(\binom{n}{k} \) for integers \(n \geq 0 \) and \(0 \leq k \leq n \).

9.9 Acknowledgements

In Summer and Fall 2016, I adapted and revised much of this work from previous work:

- my notes on *Recursion Concepts and Terminology* (Scala, Elixir, and Lua versions) [Cunningham 2016a]:

- the Haskell factorial, Fibonacci number, and exponentiation functions from my previous examples in Haskell, Elixir, Scala, Lua, and Elm, which, in turn, were adapted from the Scheme programs in Abelson and Sussman’s classic, Scheme-based textbook SICP [Abelson-Sussman 1996].

In 2017, I continued to develop this work as Chapter 3, Evaluation and Efficiency, of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I divided the previous Evaluation and Efficiency chapter into two chapters in the 2018 version of the textbook, now titled *Exploring Languages with Interpreters and Functional Programming*. Previous sections 3.1-3.2 became the basis for new Chapter 8, Evaluation Model, and previous sections 3.3-3.5 became the basis for Chapter 9 (this chapter), Recursion Styles and Efficiency. I also moved some of the discussion of preconditions and postconditions from old chapter 3 to the new chapter 6 and discussion of local definitions from old chapter 4 to new chapter 9 (this chapter).

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded LaTeX markup for the mathematical formulas and then translate the document to HTML, PDF, and other forms as needed.

9.10 References

TODO: Clean

9.11 Terms and Concepts

Recursion styles (linear vs. nonlinear, backward vs. forward, tail, and logarithmic), correctness (precondition, postcondition, and termination), efficiency estimation (time and space complexity), transformations to improve efficiency (auxiliary function, accumulator), homiconic, message-passing concurrent programming, embedded as a scripting language, client-side Web programming.