supports the display of MathML. A good choice as of July 2018 is a recent version of Firefox from Mozilla.
7 Data Abstraction

7.1 Chapter Introduction

Chapter 2 introduced the concepts of procedural and data abstraction. Chapter 6 focuses on procedural abstraction and modular design and programming. This chapter focuses on data abstraction.

The goals of this chapter are to:

- illustrate use of data abstraction
- reinforce and extend the concepts of modular design and programming using Haskell modules

7.2 Using Data Abstraction

Data abstraction can help make a program robust with respect to change in the data. As in the previous chapter, let’s begin the study of this design technique with an example.

7.2.1 Rational number arithmetic

For this example, let’s implement a group of Haskell functions to perform rational number arithmetic, assuming that the Haskell library does not contain such a data type.

In mathematics we usually write rational numbers in the form \(\frac{x}{y} \) where \(x \) and \(y \) are integers and \(y \neq 0 \).

For now, let us assume we have a special type \texttt{Rat} to represent rational numbers and a constructor function

\[
\text{makeRat} :: \text{Int} \to \text{Int} \to \text{Rat}
\]

to create a Haskell rational number instance from a numerator \(x \) and a denominator \(y \). That is, \text{makeRat} \(x \ y \) constructs a Haskell rational number with mathematical value \(\frac{x}{y} \), where \(y \neq 0 \).

Let us also assume we have selector functions \texttt{numer} and \texttt{denom} with the signatures:

\[
\text{numer, denom} :: \text{Rat} \to \text{Int}
\]

Functions \texttt{numer} and \texttt{denom} take a valid Haskell rational number and return its numerator and denominator, respectively.
Requirement: For any Int values \(x \) and \(y \) where \(y \neq 0 \), there exists a Haskell rational number \(r \) such that \(\text{makeRat} \ x \ y == r \) and rational number values \(\frac{\text{numer} \ r}{\text{denom} \ r} = \frac{x}{y} \).

Note: In this example, we use fraction notation like \(\frac{x}{y} \) to denote the mathematical value of the rational number. In contrast, \(r \) above denotes a Haskell value representing a rational number.

We consider how to implement rational numbers in Haskell later, but for now let’s look at rational arithmetic implemented using the constructor and selector functions specified above.

Given our knowledge of rational arithmetic from mathematics, we can define the operations for unary negation, addition, subtraction, multiplication, division, and equality as follows. We assume that the operands \(x \) and \(y \) are values created by the constructor makeRat.

```haskell
negRat :: Rat -> Rat
negRat x = makeRat (- numer x) (denom x)

addRat, subRat, mulRat, divRat :: Rat -> Rat -> Rat
addRat x y = makeRat (numer x * denom y + numer y * denom x) (denom x * denom y)
subRat x y = makeRat (numer x * denom y - numer y * denom x) (denom x * denom y)
mulRat x y = makeRat (numer x * numer y) (denom x * denom y)
divRat x y | eqRat y zeroRat = error "Attempt to divide by 0"
| otherwise = makeRat (numer x * denom y) (denom x * numer y)
```

```haskell
eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)
```

The above code:

1. combines the type signatures for all four arithmetic operations into a single declaration by listing the names separated by commas
2. introduces the parameterless function \(\text{zeroRat} \) to abstract the constant rational number value 0

 Note: We could represent zero as \(\text{makeRat} \ 0 \ 1 \) but choose to introduce a separate abstraction.
3. calls the \(\text{error} \) function for an attempt to divide by zero

These arithmetic functions do not depend upon any specific representation for rational numbers. Instead, they use rational numbers as a *data abstraction* defined by the type \(\text{Rat} \), constant \(\text{zeroRat} \), constructor function \(\text{makeRat} \), and selector functions \(\text{numer} \) and \(\text{denom} \).
The goal of a data abstraction is to separate the logical properties of data from the details of how the data are represented.

7.2.2 Rational number data representation

Now, how can we represent rational numbers?

For this package, we define type synonym `Rat` to denote this type:

```haskell
type Rat = (Int, Int)
```

For example, `(1,7)`, `(-1,-7)`, `(3,21)`, and `(168,1176)` all represent the value `1/7`.

As with any value that can be expressed in many different ways, it is useful to define a single canonical (or normal) form for representing values in the rational number type `Rat`.

It is convenient for us to choose a Haskell rational number representation `(x,y)` that satisfies all parts of the following Rational Representation Property:

- `(x,y) ∈ (Int,Int)`
- `y > 0`
- if `x == 0`, then `y == 1`
- `x` and `y` are relatively prime
- rational number value is `x/y`

By relatively prime, we mean that the two integers have no common divisors except 1.

This representation keeps the magnitudes of the numerator `x` and denominator `y` small, thus reducing problems with overflow arising during arithmetic operations.

This representation also gives a unique representation for zero. For convenience, we define the name `zeroRat` to represent this constant:

```haskell
gozerorat :: (Int,Int)
gozerorat = (0,1)
```

We can now define constructor function `makeRat` `x` `y` that takes two `Int` values (for the numerator and the denominator) and returns the corresponding Haskell rational number in this canonical form.

```haskell
makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number " ++ show x ++ "/0" ) -- (1)
makeRat 0 _ = zeroRat
makeRat x y = (x `div` d, y `div` d) -- (2)
  where x' = (signum' y) * x -- (3,4)
```
In the definition of `makeRat`, we use features of Haskell we have not used in the previous examples: the above code:

1. uses the infix `++` (read “append”) operator to concatenate two strings

 We discuss `++` in the chapter on infix operations.

2. puts backticks (`) around an alphanumeric function name to use that function as an infix operator

 The function `div` denotes integer division. Above the `div` operator denotes the integer division function used in an infix manner.

3. uses a `where` clause to introduce `x`, `y`, and `d` as local definitions within the body of `makeRat`

 These local definitions can be accessed from within `makeRat` but not from outside the function. In contrast, `sqrtIter` in the Square Root example is at the same level as `sqrt`, so it can be called by other functions (in the same Haskell module at least).

 The `where` feature allows us to introduce new definitions in a top-down manner—first using a symbol and then defining it.

4. uses type inference for local variables `x`, `y`, and `d` instead of giving explicit type definitions

 These parameterless functions could be declared

   ```haskell
   x', y', d :: Int
   ```

 but it was not necessary because Haskell can infer the types from the types involved in their defining expressions.

 Type inference can be used more broadly in Haskell, but explicit type declarations should be used for any function called from outside.

We require that `makeRat x y` satisfy the precondition:

```
y /= 0
```

The function generates an explicit error exception if it does not.

As a postcondition, we require `makeRat x y` to return a result `(x',y')` such that:

- `(x',y')` satisfies the Rational Representation Property
- rational number value is \(\frac{x}{y} \)

Note: Together the two postcondition requirements imply that \(\frac{x'}{y'} = \frac{x}{y} \).
The function \texttt{signum}' (similar to the more general function \texttt{signum} in the Prelude) takes an integer and returns the integer \(-1, 0,\) or \(1\) when the number is negative, zero, or positive, respectively.

\begin{verbatim}
signum' :: Int -> Int
signum' n | n == 0 = 0
 | n > 0 = 1
 | otherwise = -1
\end{verbatim}

The function \texttt{abs}' (similar to the more general function \texttt{abs} in the Prelude) takes an integer and returns its absolute value.

\begin{verbatim}
abs' :: Int -> Int
abs' n | n >= 0 = n
 | otherwise = -n
\end{verbatim}

The function \texttt{gcd}' (similar to the more general function \texttt{gcd} in the Prelude) takes two integers and returns their greatest common divisor.

\begin{verbatim}
gcd' :: Int -> Int -> Int
gcd' x y = gcd'' (abs' x) (abs' y)
 where gcd'' x 0 = x
 gcd'' x y = gcd'' y (x `rem` y)
\end{verbatim}

Prelude operation \texttt{rem} returns the remainder from dividing its first operand by its second.

Given a tuple \((x, y)\) constructed by \texttt{makeRat} as defined above, we can define \texttt{numer} \((x, y)\) and \texttt{denom} \((x, y)\) as follows:

\begin{verbatim}
numer, denom :: Rat -> Int
numer (x,_) = x
denom (_,y) = y
\end{verbatim}

The preconditions of both \texttt{numer} \((x, y)\) and \texttt{denom} \((x, y)\) are that their arguments \((x, y)\) satisfy the Rational Representation Property.

The postcondition of \texttt{numer} \((x, y)\) \(= x\) is that the rational number values \(\frac{x}{\text{denom} (x, y)} = \frac{x}{y}\).

Similarly, the postcondition of \texttt{denom} \((x, y)\) \(= y\) is that the rational number values \(\frac{\text{numer} (x, y)}{y} = \frac{x}{y}\).

Finally, to allow rational numbers to be displayed in the normal fractional representation, we include function \texttt{showRat} in the package. We use function \texttt{show}, found in the Prelude, here to convert an integer to the usual string format and use the list operator ++ to concatenate the two strings into one.

\begin{verbatim}
showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)
\end{verbatim}
Unlike Rat, zeroRat, makeRat, numer, and denom, function showRat (as implemented) does not use knowledge of the data representation. We could optimize it slightly by allowing it to access the structure of the tuple directly.

7.2.3 Modularization

There are three groups of functions in this package:

1. the six public rational arithmetic functions negRat, addRat, subRat, mulRat, divRat, and eqRat
2. the public type Rat, constant zeroRat, public constructor function makeRat, public selector functions numer and denom, and string conversion function showRat
3. the private utility functions called only by the second group, but just reimplementations of Prelude functions anyway

As we have seen, data type Rat; constant zeroRat; functions makeRat, numer, denom, and showRat; and the functions’ preconditions and postconditions form the interface to the data abstraction.

The data abstraction hides the information about the representation of the data. We can encapsulate this group of functions in a Haskell module as follows. This source code must also be in a file named RationalCore.hs.

```haskell
module RationalCore
  (Rat, zeroRat, makeRat, numer, denom, showRat)
where
  -- Rat,makeRat,zeroRat,numer,denom,showRat definitions
```

We can encapsulate the utility functions in a separate module, which would enable them to be used by several other modules.

However, given that the only use of the utility functions is within the data representation module, we choose not to separate them at this time. We leave them as local functions in the data abstraction module. Of course, we could also eliminate them and use the corresponding Prelude functions directly.

Similarly, negRat, addRat, subRat, mulRat, divRat, and eqRat use the core data abstraction and, in turn, extend the interface to include rational number arithmetic operations. We can encapsulate these in another Haskell module that imports the module giving the data representation. This module must be in a file named Rational1.hs.

```haskell
module Rational1
  (Rat, zeroRat, makeRat, numer, denom, showRat,
   negRat, addRat, subRat, mulRat, divRat, eqRat)
where
```
import RationalCore
-- negRat, addRat, subRat, mulRat, divRat, eqRat definitions

Other modules that use the rational number package can import module Rational1.

This modular approach to program design and implementation offers the potential of scalability and robustness with respect to change.

The key to this information-hiding approach to design is to identify the aspects of a software system that are most likely to change from one version to another and make each a design secret of some module.

The secret of the RationalCore module is the rational number data representation used. The secret of the Rational module itself is the methods used for rational number arithmetic.

7.2.4 Alternative data representation

In the rational number data representation above, constructor makeRat creates pairs in which the two integers are relatively prime and the sign is on the numerator. Selector functions numer and denom just return these stored values.

An alternative representation is to reverse this approach, as shown in the following module (in file RationalDeferGCD.hs.)

```haskell
module RationalDeferGCD (Rat, makeRat, numer, denom, showRat)
where

type Rat = (Int,Int)

zeroRat :: (Int,Int)
zeroRat = (0,1)

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ("Cannot construct a rational number"
++ show x ++ "/0"
)
makeRat 0 y = zeroRat
makeRat x y = (x,y)

numer :: Rat -> Int
numer (x,y) = x' `div` d
  where x' = (signum' y) * x
        y' = abs' y
        d = gcd' x' y'

denom :: Rat -> Int
denom \((x,y)\) = \(y\) `div` d
where x' = (signum' y) * x
    y' = abs' y
    d = gcd' x' y'

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

This approach defers the calculation of the greatest common divisor until a selector is called.

In this alternative representation, a rational number \((x,y)\) must satisfy all parts of the following **Deferred Representation Property**:

- \((x,y)\) \(\in\) \((\text{Int},\text{Int})\)
- \(y \neq 0\)
- if \(x == 0\), then \(y == 1\)
- rational number value is \(\frac{x}{y}\)

We require that \texttt{makeRat x y} satisfies the **precondition**:

\(y /= 0\)

The function generates an explicit error condition if it does not.

As a **postcondition**, we require \texttt{makeRat x y} to return a result \((x',y')\) such that:

- \((x',y')\) satisfies the Deferred Representation Property
- rational number value is \(\frac{x}{y}\)

The preconditions of both \texttt{numer (x,y)} and \texttt{denom (x,y)} are that \((x,y)\) satisfies the Deferred Representation Property.

The postcondition of \texttt{numer (x,y)} = \(x'\) is that the rational number values 
\[
\frac{x'}{\text{denom (x,y)}} = \frac{x}{y}.
\]
Similarly, the postcondition of \texttt{denom (x,y)} = \(y'\) is that the rational number values 
\[
\frac{\text{numer (x,y)}}{y'} = \frac{x}{y}.
\]

Question:

What are the advantages and disadvantages of the two data representations?

Like module \texttt{RationalCore}, the design secret for this module, \texttt{RationalDeferGCD}, is the rational number data representation.

Regardless of which approach is used, the definitions of the arithmetic and comparison functions do not change. Thus the \texttt{Rational} module can import data representation module \texttt{RationalCore} or \texttt{RationalDeferGCD}.
Figure 7-1 shows the dependencies among the modules we have examined in the rational arithmetic example.

We can consider the `RationalCore` and `RationalDeferGCD` modules as two concrete instances (Haskell modules) of a more abstract module we call `RationalRep` in the diagram.

The module `Rational` relies on the abstract module `RationalRep` for an implementation of rational numbers. In the Haskell code above, there are really two versions of the Haskell module `Rational` that differ only in whether they import `RationalCore` or `RationalDeferGCD`.

We could also replace alias `Rat` by a user-defined type to get another alternative definition of `RationalRep`, as long as the interface functions do not have to work
with types other than `Int`.

### 7.2.5 Haskell information-hiding modules

In the Rational Arithmetic example, we defined two information-hiding modules:

1. “RationalRep”, whose secret is how to represent the rational number data and whose interface consists of the data type `Rat`, constant `zeroRat`, operations (functions) `makeRat`, `numer`, `denom`, and `showRat`, and the constraints on these types and functions.

2. “Rational”, whose secret is how to implement the rational number arithmetic and whose interface consists of operations (functions) `negRat`, `addRat`, `subRat`, `mulRat`, `divRat`, and `eqRat`, the other module’s interface, and the constraints on these types and functions.

We developed two distinct Haskell modules, `RationalCore` and `RationalDeferGCD`, to implement the “RationalRep” information-hiding module.

We developed one distinct Haskell module, `Rational`, to implement the “Rational” information-hiding module. This module can be paired (i.e. by changing the import statement) with either of the other two variants of “RationalRep” module. (Source file `Rational1.hs` imports module `RationalCore`; source file `Rational2.hs` imports `RationalDeferGCD`.)

Unfortunately, Haskell 2010 has a relatively weak module system that does not support multiple implementations as well as we might like. There is no way to declare that multiple Haskell modules have the same interface other than copying the common code into each module and documenting the interface carefully. We must also have multiple versions of `Rational` that differ only in which other module is imported.

Together the Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and the Cabal-Install package manager release 2.0 (August 2017) support a new extension, the Backpack mixin package system. This new system remedies the above shortcoming. In this new approach, we would define the abstract module “RationalRep” as a signature file and require that `RationalCore` and `RationalDeferGCD` conform to it.

Further discussion of this new module system is beyond the scope of this chapter.

### 7.2.6 Testing

Chapter 12 discusses testing of the Rational modules designed in this chapter. The test scripts for:

- module `RationalRep`
  - `TestRatRepCore.hs` for `RationalCore`
• TestRatRepDefer.hs for RationalDeferGCD

module Rational

• TestRational1.hs for Rational using RationalCore.
• TestRational2.hs for Rational using RationalDeferGCD.

7.3 Invariants

As we see in the rational arithmetic example, a module that provides a data abstraction must ensure that the objects it creates and manipulates maintain their integrity—always have a valid structure and state.

• The RationalCore rational number representation satisfies the Rational Representation Property.
• The RationalDeferGCD rational number representation satisfies the Deferred Representation Property.

These properties are invariants for those modules. An invariant for the data abstraction can help us design and implement such objects.

Invariant: A logical assertion that must always be true for every “object” created by the public constructors and manipulated only by the public operations of the data abstraction.

Often, we separate an invariant into two parts.

Interface invariant: An invariant stated in terms of the public features and abstract properties of the “object”.

Implementation (representation) invariant: A detailed invariant giving the required relationships among the internal features of the implementation of an “object”.

An interface invariant is a key aspect of the abstract interface of a module. It is useful to the users of the module, as well to the developers.

7.3.1 RationalRep modules

In the Rational Arithmetic example, the interface invariant for the “RationalRep” abstract module is the following.

RationalRep Interface Invariant: For any valid Haskell rational number \( r \), all the following hold:

- \( r \in \text{Rat} \)
- \( \text{denom } r > 0 \)
- if \( \text{numer } r == 0 \), then \( \text{denom } r == 1 \)
• \text{numer } r \text{ and } \text{denom } r \text{ are relatively prime}
• the (mathematical) rational number value is \( \frac{\text{numer } r}{\text{denom } r} \)

We note that the \textit{precondition} for \texttt{makeRat} \( x \ y \) is defined above without any dependence upon the concrete representation.

\( y \neq 0 \)

We can restate the \textit{postcondition} for \texttt{makeRat} \( x \ y = r \) generically to require both of the following to hold:

• \( r \) satisfies the RationalRep Interface Invariant
• rational number \( r \)'s value is \( \frac{x}{y} \)

The preconditions of both \text{numer} \( r \) and \text{denom} \( r \) are that their argument \( r \) satisfies the RationalRep Interface Invariant.

The postcondition of \text{numer} \( r = x' \) is that the rational number value \( \frac{x'}{\text{denom } r} \) is equal to the rational number value of \( r \).

Similarly, the postcondition of \text{denom} \( r = y' \) is that the rational number values \( \frac{\text{numer } r}{y'} \) is equal to the rational number value of \( r \).

An implementation invariant guides the developers in the design and implementation of the internal details of a module. It relates the internal details to the interface invariant.

### 7.3.1.1 RationalCore

We can state an implementation invariant for the \texttt{RationalCore} module.

\textbf{RationalCore Implementation Invariant:} For any valid Haskell rational number \( r \), all the following hold:

• \( r = (x,y) \) for some \( (x,y) \in \text{Rat} \)
• \( y > 0 \)
• if \( x = 0 \), then \( y = 1 \)
• \( x \) and \( y \) are relatively prime
• rational number value is \( \frac{x}{y} \)

The implementation invariant implies the interface invariant given the definitions of data type \texttt{Rat} and selector functions \text{numer} and \text{denom}. Constructor function \texttt{makeRat} does the work to establish the invariant initially.

### 7.3.1.2 RationalDeferGCD

We can state an implementation invariant for the \texttt{RationalDeferGCD} module.

\textbf{RationalDeferGCD Implementation Invariant:} For any valid Haskell rational number \( r \), all the following hold:

• \( r = (x,y) \) for some \( (x,y) \in \text{Rat} \)
- $y /= 0$
- if $x == 0$, then $y == 1$
- rational number value is $\frac{x}{y}$

The implementation invariant implies the interface invariant given the definitions of $\text{Rat}$ and of the selector functions $\text{numer}$ and $\text{denom}$. Constructor function $\text{makeRat}$ is simple, but the selector functions $\text{numer}$ and $\text{denom}$ do quite a bit of work to establish the interface invariant.

### 7.3.2 Rational modules

The $\text{Rational}$ abstract module extends the $\text{RationalRep}$ abstract module with new functionality.

- It imports the public interface of the $\text{RationalRep}$ abstract module and exports those features in its own public interface. Thus it must maintain the interface invariant for the $\text{RationalRep}$ module it uses.
- It does not add any new data types or constructor (or destructor) functions. So it does not need any new invariant components for new data abstractions.
- It adds one unary and four binary arithmetic functions that take rational numbers and return a rational number. It does so by using the data abstraction provided by the $\text{RationalRep}$ module. These must preserve the $\text{RationalRep}$ interface invariant.
- It adds an equality comparison function that takes two rational numbers and returns a $\text{Bool}$.

### 7.4 What Next?

The previous chapter examined procedural abstraction and stepwise refinement for development of a square root package. This chapter examined data abstraction for development of a rational number arithmetic package. The chapters explored concepts and methods for modular design and programming using Haskell, including preconditions, postconditions, and invariants.

The next chapter examines the substitution model for evaluation of Haskell programs and explores efficiency and termination in the context of that model.

A later chapter examines how to test the modules developed in this example.

### 7.5 Exercises

For each of the following exercises, develop and test a Haskell function or set of functions.
1. Develop a Haskell module (or modules) for line segments on the two-dimensional coordinate plane using the *rectangular coordinate* system.

We can represent a line segment with two points—the starting point and the ending point. Develop the following Haskell functions:

- **constructor** `newSeg` that takes two points and returns a new line segment
- **selectors** `startPt` and `endPt` that each take a segment and return its starting and ending points, respectively

We normally represent the plane with a *rectangular coordinate* system. That is, we use two axes—an *x* axis and a *y* axis—intersecting at a right angle. We call the intersection point the *origin* and label it with 0 on both axes. We normally draw the *x* axis horizontally and label it with increasing numbers to the right and decreasing numbers to the left. We also draw the *y* axis vertically with increasing numbers upward and decreasing numbers downward. Any point in the plane is uniquely identified by its *x*-coordinate and *y*-coordinate.

Define a data representation for points in the rectangular coordinate system and develop the following Haskell functions:

- **constructor** `newPtFromRect` that takes the *x* and *y* coordinates of a point and returns a new point
- **selectors** `getx` and `gety` that takes a point and returns the *x* and *y* coordinates, respectively
- **display function** `showPt` that takes a point and returns an appropriate *String* representation for the point

Now, using the various constructors and selectors, also develop the Haskell functions for line segments:

- **midPt** that takes a line segment and returns the point at the middle of the segment
- **display function** `showSeg` that takes a line segment and returns an appropriate *String* representation

Note that `newSeg`, `startPt`, `endPt`, `midPt`, and `showSeg` can be implemented independently from how the points are represented.

2. Develop a Haskell module (or modules) for line segments that represents points using the *polar coordinate* system instead of the rectangular coordinate system used in the previous exercise.

A polar coordinate system represents a point in the plane by its *radial coordinate* *r* (i.e. the distance from the *pole*) and its *angular coordinate* *t* (i.e. the angle from the *polar axis* in the reference direction). We sometimes call *r* the *magnitude* and *t the angle.*
By convention, we align the rectangular and polar coordinate systems by making the origin the pole, the positive portion of the x axis the polar axis, and let the first quadrant (where both x and y are positive) be the smallest positive angles in the reference direction. That is, with a traditional drawing of the coordinate systems, we measure and the radial coordinate r as the distance from the origin measure the angular coordinate t counterclockwise from the positive x axis.

Using knowledge of trigonometry, we can convert among rectangular coordinates \((x,y)\) and polar coordinates \((r,t)\) using the equations:

\[
\begin{align*}
x &= r \cdot \cos(t) \\
y &= r \cdot \sin(t) \\
r &= \sqrt{x^2 + y^2} \\
t &= \arctan2(y,x)
\end{align*}
\]

Define a data representation for points in the polar coordinate system and develop the following Haskell functions:

- constructor `newPtFromPolar` that takes the magnitude \(r\) and angle \(t\) as the polar coordinates of a point and returns a new point
- selectors `getMag` and `getAng` that each take a point and return the magnitude \(r\) and angle \(t\) coordinates, respectively
- selectors `getx` and `gety` that return the x and y components of the points (represented here in polar coordinates)
- display functions `showPtAsRect` and `showPtAsPolar` to convert the points to strings using rectangular and polar coordinates, respectively,

Functions `newSeg`, `startPt`, `endPt`, `midPt`, and `showSeg` should work as in the previous exercise.

3. Modify the solutions to the previous two line-segment module exercises to enable the line segment functions to be in one module that works properly if composed with either of the two data representation modules. (The solutions may have already done this.)

4. Modify the solution to the previous line-segment exercise to use the Backpack module system.

5. Modify the modules in the previous exercise to enable the line segment module to work with both data representations in the same program.

6. Modify the solution to the Rational Arithmetic example to use the Backpack module system.

7. State preconditions and postconditions for the functions in abstract module `Rational`. 

17
7.6 Acknowledgements

In Summer and Fall 2016, I adapted and revised much of this work from my previous materials:

- Discussion of the Rational Arithmetic modules mostly from chapter 5 of my Notes on Functional Programming with Haskell [Cunningham 2014], from my Lua-based implementations, and from section 2.1 of Abelson and Sussman’s Structure and Interpretation of Computer Programs [Abelson 1996]

- Discussion of modular design and programming issues from my Data Abstraction [Cunningham 2018a] and Modular Design [Cunningham 2018b] notes, which draw from the ideas of several of the references listed below

In 2017, I continued to develop this work as Sections 2.6-2.7 in Chapter 2, Basic Haskell Functional Programming, of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I divided the previous Basic Haskell Functional Programming chapter into four chapters in the 2018 version of the textbook, now titled Exploring Languages with Interpreters and Functional Programming. Previous sections 2.1-2.3 became the basis for new Chapter 4, First Haskell Programs; previous Section 2.4 became Section 5.3 in the new Chapter 5, Types; and previous sections 2.5-2.7 were reorganized into new Chapter 6, Procedural Abstraction, and Chapter 7, Data Abstraction (this chapter).

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded LaTeX markup for the mathematical formulas and then translate the document to HTML, PDF, and other forms as needed.

7.7 References


7.8 Terms and Concepts

Haskell *module*, module exports and imports, module dependencies, rational number arithmetic, data abstraction, properties of data, data representation, precondition, postcondition, invariant, interface invariant, implementation or representation invariant, canonical or normal forms, relatively prime, information hiding, module secret, encapsulation, interface, abstract interface, type inference.