
Exploring Languages with Interpreters
and Functional Programming

Chapter 7

H. Conrad Cunningham

11 September 2018

Contents
7 Data Abstraction 2

7.1 Chapter Introduction . 2
7.2 Using Data Abstraction . 2

7.2.1 Rational number arithmetic 2
7.2.2 Rational number data representation 4
7.2.3 Modularization . 7

7.2.3.1 Module RationalCore 7
7.2.3.2 Module Rational 7
7.2.3.3 Modularization critique 8

7.2.4 Alternative data representation 8
7.2.5 Haskell information-hiding modules 10
7.2.6 Testing . 12

7.3 Invariants . 12
7.3.1 RationalRep modules . 13

7.3.1.1 RationalCore 14
7.3.1.2 RationalDeferGCD 14

7.3.2 Rational modules . 15
7.4 What Next? . 15
7.5 Exercises . 15
7.6 Acknowledgements . 17
7.7 References . 18
7.8 Terms and Concepts . 18

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of September 2018 is a
recent version of Firefox from Mozilla.

2

7 Data Abstraction

7.1 Chapter Introduction

Chapter 2 introduced the concepts of procedural and data abstraction. Chapter
6 focuses on procedural abstraction and modular design and programming. This
chapter focuses on data abstraction.

The goals of this chapter are to:

• illustrate use of data abstraction

• reinforce and extend the concepts of modular design and programming
using Haskell modules

7.2 Using Data Abstraction

Data abstraction can help make a program robust with respect to change in the
data. As in the previous chapter, let’s begin the study of this design technique
with an example.

7.2.1 Rational number arithmetic

For this example, let’s implement a group of Haskell functions to perform rational
number arithmetic, assuming that the Haskell library does not contain such a
data type.

In mathematics we usually write rational numbers in the form x
y where x and y

are integers and y 6= 0.

For now, let us assume we have a special type Rat to represent rational numbers
and a constructor function

makeRat :: Int -> Int -> Rat

to create a Haskell rational number instance from a numerator x and a de-
nominator y. That is, makeRat x y constructs a Haskell rational number with
mathematical value x

y , where y 6= 0.

Let us also assume we have selector functions numer and denom with the signa-
tures:

numer, denom :: Rat -> Int

Functions numer and denom take a valid Haskell rational number and return its
numerator and denominator, respectively.

3

Requirement: For any Int values x and y where y 6= 0, there exists a Haskell
rational number r such that makeRat x y == r and rational number values
numer r
denom r = x

y .

Note: In this example, we use fraction notation like x
y to denote the mathematical

value of the rational number. In constrast, r above denotes a Haskell value
representing a rational number.

We consider how to implement rational numbers in Haskell later, but for now
let’s look at rational arithmetic implemented using the constructor and selector
functions specified above.

Given our knowledge of rational arithmetic from mathematics, we can define the
operations for unary negation, addition, subtraction, multiplication, division,
and equality as follows. We assume that the operands x and y are values created
by the constructor makeRat.

negRat :: Rat -> Rat
negRat x = makeRat (- numer x) (denom x)

addRat, subRat, mulRat, divRat :: Rat -> Rat -> Rat -- (1)
addRat x y = makeRat (numer x * denom y + numer y * denom x)

(denom x * denom y)
subRat x y = makeRat (numer x * denom y - numer y * denom x)

(denom x * denom y)
mulRat x y = makeRat (numer x * numer y) (denom x * denom y)
divRat x y -- (2) (3)

| eqRat y zeroRat = error "Attempt to divide by 0"
| otherwise = makeRat (numer x * denom y)

(denom x * numer y)

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

The above code:

1. combines the type signatures for all four arithmetic operations into a single
declaration by listing the names separated by commas

2. introduces the parameterless function zeroRat to abstract the constant
rational number value 0

Note: We could represent zero as makeRat 0 1 but choose to introduce a
separate abstraction.

3. calls the error function for an attempt to divide by zero

These arithmetic functions do not depend upon any specific representation for
rational numbers. Instead, they use rational numbers as a data abstraction
defined by the type Rat, constant zeroRat, constructor function makeRat, and
selector functions numer and denom.

4

The goal of a data abstraction is to separate the logical properties of data from
the details of how the data are represented.

7.2.2 Rational number data representation

Now, how can we represent rational numbers?

For this package, we define type synonym Rat to denote this type:

type Rat = (Int, Int)

For example, (1,7), (-1,-7), (3,21), and (168,1176) all represent the value
1
7 .

As with any value that can be expressed in many different ways, it is useful to
define a single canonical (or normal) form for representing values in the rational
number type Rat.

It is convenient for us to choose a Haskell rational number representation (x,y)
that satisfies all parts of the following Rational Representation Property:

• (x,y) ∈ (Int,Int)

• y > 0

• if x == 0, then y == 1

• x and y are relatively prime

• rational number value is x
y

By relatively prime, we mean that the two integers have no common divisors
except 1.

This representation keeps the magnitudes of the numerator x and denominator y
small, thus reducing problems with overflow arising during arithmetic operations.

This representation also gives a unique representation for zero. For convenience,
we define the name zeroRat to represent this constant:

zeroRat :: (Int,Int)
zeroRat = (0,1)

We can now define constructor function makeRat x y that takes two Int values
(for the numerator and the denominator) and returns the corresponding Haskell
rational number in this canonical form.

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ("Cannot construct a rational number "

++ show x ++ "/0") -- (1)
makeRat 0 _ = zeroRat
makeRat x y = (x' `div` d, y' `div` d) -- (2)

where x' = (signum' y) * x -- (3,4)

5

y' = abs' y
d = gcd' x' y'

In the definition of makeRat, we use features of Haskell we have not used in the
previous examples. the above code:

1. uses the infix ++ (read “append”) operator to concatenate two strings

We discuss ++ in the chapter on infix operations.

2. puts backticks (`) around an alphanumeric function name to use that
function as an infix operator

The function div denotes integer division. Above the div operator denotes
the integer division function used in an infix manner.

3. uses a where clause to introduce x', y', and d as local definitions within
the body of makeRat

These local definition can be accessed from within makeRat but not from
outside the function. In contrast, sqrtIter in the Square Root example is
at the same level as sqrt', so it can be called by other functions (in the
same Haskell module at least).

The where feature allows us to introduce new definitions in a top-down
manner—first using a symbol and then defining it.

4. uses type inference for local variables x', y', and d instead of giving explicit
type definitions

These parameterless functions could be declared

x', y', d :: Int

but it was not necessary because Haskell can infer the types from the types
involved in their defining expressions.

Type inference can be used more broadly in Haskell, but explicit type
declarations should be used for any function called from outside.

We require that makeRat x y satisfy the precondition:

y /= 0

The function generates an explicit error exception if it does not.

As a postcondition, we require makeRat x y to return a result (x',y') such
that:

• (x',y') satisfies the Rational Representation Property

• rational number value is x
y

Note: Together the two postcondition requirements imply that x’
y’ = x

y .

6

The function signum' (similar to the more general function signum in the
Prelude) takes an integer and returns the integer -1, 0, or 1 when the number is
negative, zero, or positive, respectively.

signum' :: Int -> Int
signum' n | n == 0 = 0

| n > 0 = 1
| otherwise = -1

The function abs' (similar to the more general function abs in the Prelude)
takes an integer and returns its absolute value.

abs' :: Int -> Int
abs' n | n >= 0 = n

| otherwise = -n

The function gcd' (similar to the more general function gcd in the Prelude)
takes two integers and returns their greatest common divisor.

gcd' :: Int -> Int -> Int
gcd' x y = gcd'' (abs' x) (abs' y)

where gcd'' x 0 = x
gcd'' x y = gcd'' y (x `rem` y)

Prelude operation rem returns the remainder from dividing its first operand by
its second.

Given a tuple (x,y) constructed by makeRat as defined above, we can define
numer (x,y) and denom (x,y) as follows:

numer, denom :: Rat -> Int
numer (x,_) = x
denom (_,y) = y

The preconditions of both numer (x,y) and denom (x,y) are that their argu-
ments (x,y) satisfy the Rational Representation Property.

The postcondition of numer (x,y) = x is that the rational number values
x

numer (x,y) = x
y .

Similarly, the postcondition of denom (x,y) = y is that the rational number
values denom (x,y)

y = x
y .

Finally, to allow rational numbers to be displayed in the normal fractional
representation, we include function showRat in the package. We use function
show, found in the Prelude, here to convert an integer to the usual string format
and use the list operator ++ to concatenate the two strings into one.

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

7

Unlike Rat, zeroRat, makeRat, numer, and denom, function showRat (as imple-
mented) does not use knowledge of the data representation. We could optimize
it slightly by allowing it to access the structure of the tuple directly.

7.2.3 Modularization

There are three groups of functions in this package:

1. the six public rational arithmetic functions negRat, addRat, subRat,
mulRat, divRat, and eqRat

2. the public type Rat, constant zeroRat, public constructor function
makeRat, public selector functions numer and denom, and string conversion
function showRat

3. the private utility functions called only by the second group, but just
reimplementations of Prelude functions anyway

7.2.3.1 Module RationalCore

As we have seen, data type Rat; constant zeroRat; functions makeRat, numer,
denom, and showRat; and the functions’ preconditions and postconditions form
the interface to the data abstraction.

The data abstraction hides the information about the representation of the data.
We can encapsulate this group of functions in a Haskell module as follows. This
source code must also be in a file named RationalCore.hs.

module RationalCore
(Rat, makeRat, zeroRat, numer, denom, showRat)

where
-- Rat,makeRat,zeroRat,numer,denom,showRat definitions

In terms of the information-hiding approach, the secret of the RationalCore
module is the rational number data representation used.

We can encapsulate the utility functions in a separate module, which would
enable them to be used by several other modules.

However, given that the only use of the utility functions is within the data
representation module, we choose not to separate them at this time. We leave
them as local functions in the data abstraction module. Of course, we could also
eliminate them and use the corresponding Prelude functions directly.

7.2.3.2 Module Rational

Similarly, functions negRat, addRat, subRat, mulRat, divRat, and eqRat use
the core data abstraction and, in turn, extend the interface to include rational
number arithmetic operations.

8

RationalCore.hs

We can encapsulate these in another Haskell module that imports the module giv-
ing the data representation. This module must be in a file named Rational1.hs.

module Rational1
(Rat, zeroRat, makeRat, numer, denom, showRat,

negRat, addRat, subRat, mulRat, divRat, eqRat)
where

import RationalCore
-- negRat,addRat,subRat,mulRat,divRat,eqRat definitions

Other modules that use the rational number package can import module
Rational1.

7.2.3.3 Modularization critique

The modularization described above (potentially):

• enables a module to be reused in several different programs

• offers robustness with respect to change

The data representation and arithmetic algorithms can change indepen-
dently.

• allows multiple implementations of each module as long as the public
(abstract) interface is kept stable

• enables understanding of one module without understanding the internal
details of modules it uses

• costs some in terms of extra code and execution efficiency

But that probably does not matter given the benefits above and the code
optimizations carried out by the compiler.

7.2.4 Alternative data representation

In the rational number data representation above, constructor makeRat creates
pairs in which the two integers are relatively prime and the sign is on the
numerator. Selector functions numer and denom just return these stored values.

An alternative representation is to reverse this approach, as shown in the following
module (in file RationalDeferGCD.hs.)

module RationalDeferGCD
(Rat, zeroRat, makeRat, numer, denom, showRat)

where

type Rat = (Int,Int)

9

Rational1.hs
RationalDeferGCD.hs

zeroRat :: (Int,Int)
zeroRat = (0,1)

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ("Cannot construct a rational number "

++ show x ++ "/0")
makeRat 0 y = zeroRat
makeRat x y = (x,y)

numer :: Rat -> Int
numer (x,y) = x' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

denom :: Rat -> Int
denom (x,y) = y' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

This approach defers the calculation of the greatest common divisor until a
selector is called.

In this alternative representation, a rational number (x,y) must satisfy all parts
of the following Deferred Representation Property:

• (x,y) ∈ (Int,Int)

• y /= 0

• if x == 0 , then y == 1

• rational number value is x
y

We require that makeRat x y satisfies the precondition:

y /= 0

The function generates an explicit error condition if it does not.

As a postcondition, we require makeRat x y to return a result (x',y') such
that:

• (x',y') satisfies the Deferred Representation Property

• rational number value is x
y

10

The preconditions of both numer (x,y) and denom (x,y) are that (x,y) satis-
fies the Deferred Representation Property.

The postcondition of numer (x,y) = x' is that the rational number values
x’

numer (x,y) = x
y .

Similarly, the postcondition of denom (x,y) = y is that the rational number
values denom (x,y)

y′ = x
y .

Question:

What are the advantages and disadvantages of the two data repre-
sentations?

Like module RationalCore, the design secret for this module, RationalDeferGCD,
is the rational number data representation.

Regardless of which approach is used, the definitions of the arithmetic and
comparison functions do not change. Thus the Rational module can import
data representation module RationalCore or RationalDeferGCD.

Figure 7-1 shows the dependencies among the modules we have examined in the
rational arithmetic example.

We can consider the RationalCore and RationalDeferGCD modules as two con-
crete instances (Haskell module s) of a more abstract module we call RationalRep
in the diagram.

The module Rational relies on the abstract module RationalRep for an imple-
mentation of rational numbers. In the Haskell code above, there are really two
versions of the Haskell module Rational that differ only in whether they import
RationalCore or RationalDeferGCD.

We could also replace alias Rat by a user-defined type to get another alternative
definition of RationalRep, as long as the interface functions do not have to work
with types other than Int.

7.2.5 Haskell information-hiding modules

In the Rational Arithmetic example, we defined two information-hiding modules:

1. “RationalRep”, whose secret is how to represent the rational number
data and whose interface consists of the data type Rat, constant zeroRat,
operations (functions) makeRat, numer, denom, and showRat, and the
constraints on these types and functions

2. “Rational”, whose secret is how to implement the rational number
arithmetic and whose interface consists of operations (functions) negRat,
addRat, subRat, mulRat, divRat, and eqRat, the other module’s interface,
and the constraints on these types and functions

11

Figure 7-1. Rational Package Module Dependencies

12

We developed two distinct Haskell modules, RationalCore and RationalDeferGCD,
to implement the “RationalRep” information-hiding module.

We developed one distinct Haskell module, Rational, to implement the “Ratio-
nal” information-hiding module. This module can be paired (i.e. by changing
the import statement) with either of the other two variants of “RationalRep”
module. (Source file Rational1.hs imports module RationalCore; source file
Rational2.hs imports RationalDeferGCD.)

Unfortunately, Haskell 2010 has a relatively weak module system that does not
support multiple implementations as well as we might like. There is no way to
declare that multiple Haskell modules have the same interface other than copying
the common code into each module and documenting the interface carefully. We
must also have multiple versions of Rational that differ only in which other
module is imported.

Together the Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and
the Cabal-Install package manager release 2.0 (August 2017) support a new
extension, the Backpack mixin package system. This new system remedies
the above shortcoming. In this new approach, we would define the abstract
module “RationalRep” as a signature file and require that RationalCore and
RationalDeferGCD conform to it.

Further discussion of this new module system is beyond the scope of this chapter.

7.2.6 Testing

Chapter 12 discusses testing of the Rational modules designed in this chapter.
The test scripts for:

• Module RationalRep

– TestRatRepCore.hs for RationalCore

– TestRatRepDefer.hs for RationalDeferGCD

• Module Rational

– TestRational1.hs for Rational using RationalCore.

– TestRational2.hs for Rational using RationalDeferGCD.

7.3 Invariants

As we see in the rational arithmetic example, a module that provides a data
abstraction must ensure that the objects it creates and manipulates maintain
their integrity—always have a valid structure and state.

• The RationalCore rational number representation satisfies the Rational
Representation Property.

13

Rational.hs
Rational2.hs
TestRatRepCore.hs
TestRatRepDefer.hs
TestRational1.hs
TestRational2.hs

• The RationalDeferGCD rational number representation satisfies the De-
ferred Representation Property.

These properties are invariants for those modules. An invariant for the data
abstraction can help us design and implement such objects.

Invariant: A logical assertion that must always be true for every “object”
created by the public constructors and manipulated only by the public
operations of the data abstraction.

Often, we separate an invariant into two parts.

Interface invariant: An invariant stated in terms of the public features and
abstract properties of the “object”.

Implementation (representation) invariant: A detailed invariant giving
the required relationships among the internal features of the implementation
of an “object”

An interface invariant is a key aspect of the abstract interface of a module. It is
useful to the users of the module, as well to the developers.

7.3.1 RationalRep modules

In the Rational Arithmetic example, the interface invariant for the “RationalRep”
abstract module is the following.

RationalRep Interface Invariant: For any valid Haskell rational number r,
all the following hold:

• r ∈ Rat

• denom r > 0

• if numer r == 0, then denom r == 1

• numer r and denom r are relatively prime

• the (mathematical) rational number value is numer r
denom r

We note that the precondition for makeRat x y is defined above without any
dependence upon the concrete representation.

y /= 0

We can restate the postcondition for makeRat x y = r generically to require
both of the following to hold:

• r satisfies the RationaRep Interface Invariant

• rational number r ’s value is x
y

14

The preconditions of both numer r and denom r are that their argument r
satisfies the RationalRep Interface Invariant.

The postcondition of numer r = x' is that the rational number value x’
denom r is

equal to the rational number value of r.

Similarly, the postcondition of denom r = y' is that the rational number value
numer r

y′ is equal to the rational number value of r.

An implementation invariant guides the developers in the design and implemen-
tation of the internal details of a module. It relates the internal details to the
interface invariant.

7.3.1.1 RationalCore

We can state an implementation invariant for the RationalCore module.

RationalCore Implementation Invariant: For any valid Haskell rational
number r, all the following hold:

• r == (x,y) for some (x,y) ∈ Rat

• y > 0

• if x == 0, then y == 1

• x and y are relatively prime

• rational number value is x
y

The implementation invariant implies the interface invariant given the definitions
of data type Rat and selector functions numer and denom. Constructor function
makeRat does the work to establish the invariant initially.

7.3.1.2 RationalDeferGCD

We can state an implementation invariant for the RationalDeferGCD module.

RationalDeferGCD Implementation Invariant: For any valid Haskell ra-
tional number r, all the following hold:

• r == (x,y) for some (x,y) ∈ Rat

• y /= 0

• if x == 0, then y == 1

• rational number value is x
y

The implementation invariant implies the interface invariant given the definitions
of Rat and of the selector functions numer and denom. Constructor function
makeRat is simple, but the selector functions numer and denom do quite a bit of
work to establish the interface invariant.

15

7.3.2 Rational modules

The Rational abstract module extends the RationalRep abstract module with
new functionality.

• It imports the public interface of the RationalRep abstract module and
exports those features in its own public interface. Thus it must maintain
the interface invariant for the RationalRep module it uses.

• It does not add any new data types or constructor (or destructor) functions.
So it does not need any new invariant components for new data abstractions.

• It adds one unary and four binary arithmetic functions that take rational
numbers and return a rational number. It does so by using the data
abstraction provided by the RationalRep module. These must preserve
the RationalRep interface invariant.

• It adds an equality comparison function that takes two rational numbers
and returns a Bool.

7.4 What Next?

The previous chapter examined procedural abstraction and stepwise refinement
for development of a square root package.

This chapter examined data abstraction for development of a rational number
arithmetic package. The chapters explored concepts and methods for modular
design and programming using Haskell, including preconditions, postconditions,
and invariants.

The next chapter examines the substitution model for evaluation of Haskell
programs and explores efficiency and termination in the context of that model.

A later chapter examines how to test the modules developed in this example.

7.5 Exercises

For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell module (or modules) for line segments on the two-
dimensional coordinate plane using the rectangular coordinate system.

We can represent a line segment with two points—the starting point and
the ending point. Develop the following Haskell functions:

• constructor newSeg that takes two points and returns a new line
segment

16

• selectors startPt and endPt that each take a segment and return its
starting and ending points, respectively

We normally represent the plane with a rectangular coordinate system.
That is, we use two axes—an x axis and a y axis—intersecting at a right
angle. We call the intersection point the origin and label it with 0 on both
axes. We normally draw the x axis horizontally and label it with increasing
numbers to the right and decreasing numbers to the left. We also draw the
y axis vertically with increasing numbers upward and decreasing numbers
downward. Any point in the plane is uniquely identified by its x-coordinate
and y-coordinate.

Define a data representation for points in the rectangular coordinate system
and develop the following Haskell functions:

• constructor newPtFromRect that takes the x and y coordinates of a
point and returns a new point

• selectors getx and gety that takes a point and returns the x and y
coordinates, respectively

• display function showPt that takes a point and returns an appropriate
String representation for the point

Now, using the various constructors and selectors, also develop the Haskell
functions for line segments:

• midPt that takes a line segment and returns the point at the middle
of the segment

• display function showSeg that takes a line segment and returns an
appropriate String representation

Note that newSeg, startPt, endPt, midPt, and showSeg can be imple-
mented independently from how the points are represented.

2. Develop a Haskell module (or modules) for line segments that represents
points using the polar coordinate system instead of the rectangular coordi-
nate system used in the previous exercise.

A polar coordinate system represents a point in the plane by its radial
coordinate r (i.e. the distance from the pole) and its angular coordinate t
(i.e. the angle from the polar axis in the reference direction). We sometimes
call r the magnitude and t the angle.

By convention, we align the rectangular and polar coordinate systems by
making the origin the pole, the positive portion of the x axis the polar
axis, and let the first quadrant (where both x and y are positive) be
the smallest positive angles in the reference direction. That is, with a
traditional drawing of the coordinate systems, we measure and the radial
coordinate r as the distance from the origin measure the angular coordinate
t counterclockwise from the positive x axis.

17

Using knowledge of trigonometry, we can convert among rectangular coor-
dinates (x,y) and polar coordinates (r,t) using the equations:

x = r * cos(t)
y = r * sin(t)
r = sqrt(x^2 + y^2)
t = arctan2(y,x)

Define a data representation for points in the polar coordinate system and
develop the following Haskell functions:

• constructor newPtFromPolar that takes the magnitude r and angle t
as the polar coordinates of a point and returns a new point

• selectors getMag and getAng that each take a point and return the
magnitude r and angle t coordinates, respectively

• selectors getx and gety that return the x and y components of the
points (represented here in polar coordinates)

• display functions showPtAsRect and showPtAsPolar to convert the
points to strings using rectangular and polar coordinates, respectively,

Functions newSeg, startPt, endPt, midPt, and showSeg should work as
in the previous exercise.

3. Modify the solutions to the previous two line-segment module exercises to
enable the line segment functions to be in one module that works properly
if composed with either of the two data representation modules. (The
solutions may have already done this.)

4. Modify the solution to the previous line-segment exercise to use the Back-
pack module system.

5. Modify the modules in the previous exercise to enable the line segment
module to work with both data representations in the same program.

6. Modify the solution to the Rational Arithmetic example to use the Backpack
module system.

7. State preconditions and postconditions for the functions in abstract module
Rational.

7.6 Acknowledgements

In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

• Discussion of the Rational Arithmetic modules mostly from chapter 5 of
my Notes on Functional Programming with Haskell [Cunningham 2014],
from my Lua-based implementations, and from section 2.1 of Abelson and

18

Sussman’s Structure and Interpretation of Computer Programs [Abelson
1996]

• Discussion of modular design and programming issues from my Data
Abstraction [Cunningham 2018a] and Modular Design [Cunningham 2018b]
notes, which draw from the ideas of several of the references listed below

In 2017, I continued to develop this work as Sections 2.6-2.7 in Chapter 2,
Basic Haskell Functional Programming, of my 2017 Haskell-based programming
languages textbook.

In Spring and Summer 2018, I divided the previous Basic Haskell Functional
Programming chapter into four chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 2.1-2.3 became the basis for new Chapter 4, First Haskell
Programs; previous Section 2.4 became Section 5.3 in the new Chapter 5, Types;
and previous sections 2.5-2.7 were reorganized into new Chapter 6, Procedural
Abstraction, and Chapter 7, Data Abstraction (this chapter).

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

7.7 References

[Abelson 1996]: Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs (SICP), Second Edition, MIT Press,
1996.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Cunningham 2018a]: H. Conrad Cunningham. Notes on Data Abstraction,
1996-2018.

[Cunningham 2018b]: H. Conrad Cunningham. Notes on Modular Design,
1996-2018.

7.8 Terms and Concepts

Haskell module, module exports and imports, module dependencies, rational
number arithmetic, data abstraction, properties of data, data representation,
precondition, postcondition, invariant, interface invariant, implementation or
representation invariant, canonical or normal forms, relatively prime, information
hiding, module secret, encapsulation, interface, abstract interface, type inference.

19

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.s.olemiss.edu/~hcc/csci658/notes/DataAbstraction.html
https://john.s.olemiss.edu/~hcc/csci658/notes/ModularDesign.html

	Data Abstraction
	Chapter Introduction
	Using Data Abstraction
	Rational number arithmetic
	Rational number data representation
	Modularization
	Module RationalCore
	Module Rational
	Modularization critique

	Alternative data representation
	Haskell information-hiding modules
	Testing

	Invariants
	RationalRep modules
	RationalCore
	RationalDeferGCD

	Rational modules

	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

