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5 Types

5.1 Chapter Introduction

The goals of this chapter are to:

• examine the general concepts of type systems

• explore Haskell’s builtin types

5.2 Type System Concepts

The term type tends to be used in many different ways in programming languages.
What is a type?

The chapter on object-based paradigms discusses the concept of type in the
context of object-oriented languages. This chapter first examines the concept
more generally and then examines Haskell’s builtin types.

5.2.1 Types and subtypes

Conceptually, a type is a set of values (i.e. possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T and set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [Liskov 1987] [Wikipedia
2018a].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.
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5.2.2 Constants, variables, and expressions

Now consider the types of the basic program elements.

A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

5.2.3 Static and dynamic

In a statically typed language, the types of a variable or expression can be deter-
mined from the program source code and checked at “compile time” (i.e. during
the syntactic and semantic processing in the front-end of a language processor).
Such languages may require at least some of the types of variables or expressions
to be declared explicitly, while others may be inferred implicitly from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

5.2.4 Nominal and structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
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are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.

In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is primarily a structurally typed language.

5.2.5 Polymorphic operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphism exist in programming languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism, which we examine in a later chapter,
implements overloading polymorphism in Haskell. There are similar
mechanisms in other languages such as Scala and Rust.

5



b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e. exhibiting early binding).

The object-oriented programming (e.g. Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g. Haskell) community often calls this
simply polymorphism.

5.2.6 Polymorphic variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g. Python) is poly-
morphic. It can potentially “hold” any value. The variable takes on the type of
whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g. Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.
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5.3 Surveying the Basic Types

The type system is an important part of Haskell; the compiler or interpreter uses
the type information to detect errors in expressions and function definitions. To
each expression Haskell assigns a type that describes the kind of value represented
by the expression.

Haskell has both built-in types (defined in the language or its standard libraries)
and facilities for defining new types. In the following we discuss the primary
built-in types. As we have seen, a Haskell type name begins with a capital letter.

In this textbook, we sometimes refer to the types Int, Float, Double, Bool,
and Char as being primitive because they likely have direct support in the host
processor’s hardware.

5.3.1 Integers: Int and Integer

The Int data type is usually an integer data type supported directly by the host
processor (e.g. 32- or 64-bits on most current processors), but it is guaranteed
to have the range of at least a 30-bit, two’s complement integer.

The type Integer is an unbounded precision integer type. Unlike Int, host
processors usually do not support this type directly. The Haskell library or
runtime system typically supports this type in software.

Haskell integers support the usual literal formats (i.e. constants) and typical
operations:

• Infix binary operators such as + (addition), - (subtraction), * (multiplica-
tion), and ^ (exponentiation)

• Infix binary comparison operators such as == (equality of values), /=
(inequality of values), <, <=, >, and >=

• Unary operator - (negation)

For integer division, Haskell provides two-argument functions div and rem such
that div m n returns the integral quotient from dividing m by n and rem m n
returns the remainder.

Haskell also provides the useful two-argument functions min and max, which
return the minimum and maximum of the two arguments, respectively.

Two-arguments functions such as div, rem, min, and max can be applied in infix
form by including the function name between backticks as show below:

5 `div` 3 -- yields 1
5 `rem` 3 -- yields 2
5 `min` 3 -- yields 3
5 `max` 3 -- yields 5
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5.3.2 Floating point numbers: Float and Double

The Float and Double data types are usually the single and double precision
floating point numbers supported directly by the host processor.

Haskell floating point literals must include a decimal point; they may be signed
or in scientific notation: 3.14159, 2.0, -2.0, 1.0e4, 5.0e-2, -5.0e-2.

Haskell supports the usual operations on floating point numbers. Division is
denoted by / as usual.

5.3.3 Booleans: Bool

The Bool (i.e. Boolean) data type is usually supported directly by the host
processor as one or more contiguous bits.

The Bool literals are True and False. Note that these begin with capital letters.

Haskell supports Boolean operations such as && (and), || (or), and not (logical
negation).

Functions can match against patterns using the Boolean constants. For example,
we could define a function myAnd as follows:

myAnd :: Bool -> Bool -> Bool
myAnd True b = b
myAnd False _ = False

Above the pattern _ is a wildcard that matches any value but does not bind a
value that can be used on the right-hand-side of the definition.

The expressions in Haskell if conditions and guards on function definitions must
be Bool-valued expressions. They can include calls to functions that return Bool
values.

5.3.4 Characters: Char

The Char data type is usually supported directly by the host processor by one
or more contiguous bytes.

Haskell uses Unicode for its character data type. Haskell supports character
literals enclosed in single quotes—including both the graphic characters (e.g. ’a’,
’0’, and ’Z’) and special codes entered following the escape character backslash
\ (e.g. '\n' for newline, '\t' for horizontal tab, and '\\' for backslash itself).

In addition, a backslash character \ followed by a number generates the corre-
sponding Unicode character code. If the first character following the backslash is
o, then the number is in octal representation; if followed by x, then in hexadecimal
notation; and otherwise in decimal notation.
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For example, the exclamation point character can be represented in any of the
following ways: ’!’, '\33', '\o41', '\x21'

5.3.5 Functions: t1 -> t2

If t1 and t2 are types then t1 -> t2 is the type of a function that takes an
argument of type t1 and returns a result of type t2.

Function and variable names begin with lowercase letters optionally followed by
a sequences of characters each of which is a letter, a digit, an apostrophe (')
(sometimes pronounced “prime”), or an underscore (_).

Haskell functions are first-class objects. They can be arguments or results of
other functions or be components of data structures. Multi-argument functions
are curried—that is, treated as if they take their arguments one at a time.

For example, consider the integer addition operation (+). (Surrounding the
binary operator symbol with parentheses refers to the corresponding function.)
In mathematics, we normally consider addition as an operation that takes a pair
of integers and yields an integer result, which would have the type signature

(+) :: (Int,Int) -> Int

In Haskell, we give the addition operation the type

(+) :: Int -> (Int -> Int)

or just

(+) :: Int -> Int -> Int

since Haskell binds -> from the right.

Thus (+) is a one argument function that takes some Int argument and returns a
function of type Int -> Int. Hence, the expression ((+) 5) denotes a function
that takes one argument and returns that argument plus 5.

We sometimes speak of this (+) operation as being partially applied (i.e. to one
argument instead of two).

This process of replacing a structured argument by a sequence of simpler ones
is called currying, named after American logician Haskell B. Curry who first
described it.

The Haskell library, called the standard prelude (or just Prelude), contains a
wide range of predefined functions including the usual arithmetic, relational, and
Boolean operations. Some of these operations are predefined as infix operations.
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5.3.6 Tuples: (t1,t2,...,tn)

If t1, t2, · · ·, tn are types, where n is finite and n >= 2, then is a type consisting
of n-tuples where the various components have the type given for that position.

Each element in a tuple may have different types. The number of elements in a
tuple is fixed.

Examples of tuple values with their types include the following:

('a',1) :: (Char,Int)
(0.0,0.0,0.0) :: (Double,Double,Double)
(('a',False),(3,4)) :: ((Char, Bool), (Int, Int))

We can also define a type synonym using the type declaration and the use the
synonym in further declarations as follows:

type Complex = (Float,Float)
makeComplex :: Float -> Float -> Complex
makeComplex r i = (r,i)`

A type synonym does not define a new type, but it introduces an alias for an
existing type. We can use Complex in declarations, but it has the same effect
as using (Float,Float) expect that Complex provides better documentation of
the intent.

5.3.7 Lists: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
notation such as [t] to denote a list of zero or more elements of type t.

A list literal is a comma-separated sequence of values enclosed between [ and ].
For example, [] is an empty list and [1,2,3] is a list of the first three positive
integers in increasing order.

We will look at programming with lists in a later chapter.

5.3.8 Strings: String

In Haskell, a string is just a list of characters. Thus Haskell defines the data
type String as a type synonym :

type String = [Char]

We examine lists and strings in a later chapter, but, because we use strings in a
few examples in this subsection, let’s consider them briefly.

A String literal is a sequence of zero or more characters enclosed in double
quotes, for example, "Haskell programming".
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Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

For example, the string literal "Hotty\nToddy!\n" is a string that has two
newline characters embedded.

Also the string literal "\12\&3" represents the two-element list ['\12','3'].

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings. We look at manipulating lists and strings in
later chapters of this textbook.

5.4 What Next?

In this chapter, we examined general type systems concepts and explored Haskell’s
builtin types.

In the next two chapters, we examine methods for developing Haskell programs
using abstraction. We explore use of top-down stepwise refinement, modular
design, and other methods in the context of Haskell.

5.5 Exercises

For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell function sumSqBig that takes three Double arguments
and returns the sum of the squares of the two larger numbers.

For example, sumSqBig 2.0 1.0 3.0 yields 13.0.

2. Develop a Haskell function prodSqSmall that takes three Double argu-
ments and returns the product of the squares of the two smaller numbers.

For example, prodSqSmall 2.0 4.0 3.0 yields 36.0.

3. Develop a Haskell function xor that takes two Booleans and returns the
“exclusive-or” of the two values. An exclusive-or operation returns True
when exactly one of its arguments is True and returns False otherwise.

4. Develop a Haskell Boolean function implies that takes two Booleans p
and q and returns the Boolean result p ⇒ q (i.e. logical implication). That
is, if p is True and q is False, then the result is False; otherwise, the
result is True.

Note: This function is sometimes called nand.
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5. Develop a Haskell Boolean function div23n5 that takes an Int and returns
True if and only if the integer is divisible by 2 or divisible by 3, but is not
divisible by 5.

For example, div23n5 4, div23n5 6, and div23n5 9 yield True and
div23n5 5, div23n5 7, div23n5 10, div23n5 15, div23n5 30 yield
False.

6. Develop a Haskell function notDiv such that notDiv n d returns True if
and only if integer n is not divisible by d.

For example, notDiv 10 5 yields False and notDiv 11 5 yields True.

7. Develop a Haskell function ccArea that takes the diameters of two concen-
tric circles (i.e. with the same center point) as Double values and returns
the area of the space between the circles. That is, compute the area of
the larger circle minus the area of the smaller circle. (Hint: Haskell has a
builtin constant pi.)

For example, ccArea 2.0 4.0 yields approximately 9.42477796.

8. Develop a Haskell function mult that takes two natural numbers (i.e. non-
negative integers in Int) and returns their product. The function must not
use the multiplication (*) or division (div) operators. Hint: Multiplication
can be done by repeated addition.

9. Develop a Haskell function addTax that takes two Double values such that
addTax c p returns c with a sales tax of p percent added. For example,
addTax 2.0 9.0 returns 2.18.

Also develop a function subTax that is the inverse of addTax. That is,
subTax (addTax c p) p yields c. For example, subTax 2.18 9.0 = 2.0.

10. The time of day can be represented by a tuple (hours,minutes,m)
where hours and minutes are Int values with 1 <= hours <= 12 and
0 <= minutes <= 59, and wehre m is either the string value "AM" or "PM".

Develop a Boolean Haskell function comesBefore that takes two time-of-
day tuples and determines whether the first is an earlier time than the
second.

11. A day on the calendar (usual Gregorian calendar used in the USA) can be
represented as a tuple with three Int values (month,day,year)
where the year is a positive integer, 1 <= month <= 12, and
1 <= day <= days_in_month. Here days_in_month is the number
of days in the the given month (i.e. 28, 29, 30, or 31) for the given year.

Develop a Boolean Haskell function validDay d that takes a date tuple d
and returns True if and only if d represents a valid date.

For example, validDay (8,20,2018) and validDay(2,29,2016} yield
True and validDay (2,29,2017) and validDay(0,0,0) yield False.
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Note: The Gregorian calendar [Wikipedia 2018c] was introduced by Pope
Gregory of the Roman Catholic Church in October 1582. It replaced the
Julian calendar system, which had been instituted in the Roman Empire
by Julius Caesar in 46 BC. The goal of the change was to align the calendar
year with the astronomical year.

Some countries adopted the Gregorian calendar at that time. Other
countries adopted it later. Some countries may never have adopted it
officially.

However, the Gregorian calendar system became the common calendar
used worldwide for most civil matters. The proleptic Gregorian calendar
[Wikipedia 2018c] extends the calendar backward in time from 1582. The
year 1 BC becomes year 0, 2 BC becomes year -1, etc. The proleptic
Gregorian calendar underlies the ISO 8601 standard used for dates and
times in software systems [Wikipedia 2018c].

TODO: In the future, change the name of validDay to validDate, which
is more accurate.

12. Develop a Haskell function roman that takes an Int) in the range from 0 to
3999 (inclusive) and returns the corresponding Roman numeral as a string
(using capital letters). The function should halt with an appropriate error
messages if the argument is below or above the range. Roman numbers
use the following symbols and are combined by addition or subtraction of
symbols.

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

For the purposes of this exercise, we represent the Roman numeral for 0
as the empty string. The Roman numbers for integers 1-20 are I, II, III,
IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVII, XIX,
and XX. Integers 40, 90, 400, and 900 are XL, XC, CD, and CM.

13. Develop a Haskell function

minf :: (Int -> Int) -> Int

that takes a function g and returns the smallest integer m such that
0 <= m <= 10000000 and g m == 0. It should throw and error if there
is no such integer.
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5.8 Terms and Concepts

Type, subtype, Liskov Substitution Principle, types of constants, variables, and
expressions, static vs. dynamic types, nominal vs. structural types, polymorphic
operations (ad hoc, overloading, subtyping, parametric/generic), early vs. late
binding, compile time vs. runtime, polymorphic variables, basic Haskell types
(Int, Integer, Bool, Char, functions, tuples, lists, String), type aliases, library
(Prelude) functions, proleptic Gregorian calendar system, Roman numerals.
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