
Exploring Languages with Interpreters
and Functional Programming

Chapter 4

H. Conrad Cunningham

1 September 2018

Contents
4 First Haskell Programs 2

4.1 Chapter Introduction . 2
4.2 Defining Our First Haskell Functions 2

4.2.1 Factorial function specification 2
4.2.2 Factorial function using if-then-else: fact1 3
4.2.3 Factorial function using guards: fact2 5
4.2.4 Factorial function using pattern matching: fact3 and fact4 5
4.2.5 Factorial function using built-in library function: fact5 . 6
4.2.6 Testing . 7

4.3 Using the Glasgow Haskell Compiler (GHC) 7
4.4 What Next? . 9
4.5 Exercises . 9
4.6 Acknowledgements . 10
4.7 References . 10
4.8 Terms and Concepts . 10

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of September 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

4 First Haskell Programs

4.1 Chapter Introduction

The goals of this chapter are to

• introduce the definition of Haskell functions using examples

• illustrate the use of the ghci interactive REPL (Read-Evaluate-Print Loop)
interpreter

4.2 Defining Our First Haskell Functions

Let’s look at our first function definition in the Haskell language, a program to
implement the factorial function for natural numbers.

The Haskell source file Factorial.hs holds the Haskell function definitions for
this chapter. The test script is in source file TestFactorial.hs; it is discussed
further in Chapter 10 on Software Testing,

4.2.1 Factorial function specification

We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments. We can define fact using the
product operator as follows:

fact(n) =
∏i=n

i=1 i

For example,

fact(4) = 1 × 2 × 3 × 4.

By definition

fact(0) = 1

which is the identity element of the multiplication operation.

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n − 1), if n ≥ 1

Since the domain of fact’ is the set of natural numbers, a set over which induction
is defined, we can easily see that this recursive definition is well defined.

• For n = 0, the base case, the value is simply 1.

2

Factorial.hs
TestFactorial.hs

• For n ≥ 1, the value of fact’(n) is recursively defined in terms of fact’(n−1).
The argument of the recursive application decreases toward the base case.

In the Review of Relevant Mathematics appendix, we prove that fact(n) =
fact’(n) by mathematical induction.

The Haskell functions defined in the following subsections must compute fact(n)
when applied to argument value n ≥ 0.

4.2.2 Factorial function using if-then-else: fact1

One way to translate the recursive definition fact’ into Haskell is the following:

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
else

n * fact1 (n-1)

• The first line above is the type signature for function fact1. In general,
type signatures have the syntax object :: type.

Haskell type names begin with an uppercase letter.

The above defines object fact1 as a function (denoted by the -> symbol)
that takes one argument of type integer (denoted by the first Int) and
returns a value of type integer (denoted by the last Int).

Haskell does not have a built-in natural number type. Thus we choose
type Int for the argument and result of fact1.

The Int data type is a bounded integer type, usually the integer data
type supported directly by the host processor (e.g. 32- or 64-bits on most
current processors), but it is guaranteed to have the range of at least a
30-bit, two’s complement integer (−229 to 229).

• The declaration for the function fact1 begins on the second line. Note
that it is an equation of the form

fname parms = body

where fname is the function’s name, parms are the function’s parameters,
and body is an expression defining the function’s result.

Function and variable names begin with lowercase letters optionally followed
by a sequence of characters each of which is a letter, a digit, an apostrophe
(') (sometimes pronounced “prime”), or an underscore (_).

A function may have zero or more parameters. The parameters are listed
after the function name without being enclosed in parentheses and without
commas separating them.

3

The parameter names may appear in the body of the function. In the eval-
uation of a function application the actual argument values are substituted
for parameters in the body.

• Above we define the body function fact1 to be an if-then-else expression.
This kind of expression has the form

if condition then expression1 else expression2

where

condition is a Boolean expression, that is, an expression of Haskell
type Bool, which has either True or False as its value

expression1 is the expression that is returned when the condition
is True

expression2 is the expression (with the same type as expression1)
that is returned when the condition is False

Evaluation of the if-then-else expression in fact1 yields the value 1 if
argument n has the value 0 (i.e. n == 0) and yields the value n * fact1
(n-1) otherwise.

• The else clause includes a recursive application of fact1. The whole
expression (n-1) is the argument for the recursive application, so we
enclose it in parenthesis.

The value of the argument for the recursive application is less than the
value of the original argument. For each recursive application of fact to a
natural number, the argument’s value thus moves closer to the termination
value 0.

• Unlike most conventional languages, the indentation is significant in Haskell.
The indentation indicates the nesting of expressions.

For example, in fact1 the n * fact1 (n-1) expression is nested inside
the else clause of the if-then-else expression.

• This Haskell function does not match the mathematical definition given
above. What is the difference?

Notice the domains of the functions. The evaluation of fact1 will go into
an “infinite loop” and eventually abort when it is applied to a negative
value.

In Haskell there is only one way to form more complex expressions from simpler
ones: apply a function.

Neither parentheses nor special operator symbols are used to denote function
application; it is denoted by simply listing the argument expressions following
the function name. For example, a function f applied to argument expressions x
and y is written in the following prefix form:

4

f x y

However, the usual prefix form for a function application is not a convenient
or natural way to write many common expressions. Haskell provides a helpful
bit of syntactic sugar, the infix expression. Thus instead of having to write the
addition of x and y as

add x y

we can write it as

x + y

as we have since elementary school. Here the symbol + represents the addition
function.

Function application (i.e. juxtaposition of function names and argument expres-
sions) has higher precedence than other operators. Thus the expression f x +
y is the same as (f x) + y.

4.2.3 Factorial function using guards: fact2

An alternative way to differentiate the two cases in the recursive definition is to
use a different equation for each case. If the Boolean guard (e.g. n == 0) for an
equation evaluates to true, then that equation is used in the evaluation of the
function. A guard is written following the | symbol as follows:

fact2 :: Int -> Int
fact2 n

| n == 0 = 1
| otherwise = n * fact2 (n-1)

Function fact2 is equivalent to the fact1. Haskell evaluates the guards in a
top-to-bottom order. The otherwise guard always succeeds; thus it’s use above
is similar to the trailing else clause on the if-then-else expression used in
fact1.

4.2.4 Factorial function using pattern matching: fact3 and fact4

Another equivalent way to differentiate the two cases in the recursive definition
is to use pattern matching as follows:

fact3 :: Int -> Int
fact3 0 = 1
fact3 n = n * fact3 (n-1)

The parameter pattern 0 in the first leg of the definition only matches arguments
with value 0. Since Haskell checks patterns and guards in a top-to-bottom order,

5

the n pattern matches all nonzero values. Thus fact1, fact2, and fact3 are
equivalent.

To stop evaluation from going into an “infinite loop” for negative arguments, we
can remove the negative integers from the function’s domain. One way to do
this is by using guards to narrow the domain to the natural numbers as in the
definition of fact4 below:

fact4 :: Int -> Int
fact4 n

| n == 0 = 1
| n >= 1 = n * fact4 (n-1)

Function fact4 is undefined for negative arguments. If fact4 is applied to a
negative argument, the evaluation of the program encounters an error quickly
and returns without going into an infinite loop. It prints an error and halts
further evaluation.

We can define our own error message for the negative case using an error call
as in fact4' below.

fact4' :: Int -> Int
fact4' n

| n == 0 = 1
| n >= 1 = n * fact4' (n-1)
| otherwise = error "fact4' called with negative argument"

In addition to displaying the custom error message, this also displays a stack
trace of the active function calls.

4.2.5 Factorial function using built-in library function: fact5

The four definitions we have looked at so far use recursive patterns similar to
the recurrence relation fact’. Another alternative is to use the library function
product and the list-generating expression [1..n] to define a solution that is
like the function fact:

fact5 :: Int -> Int
fact5 n = product [1..n]

The list expression [1..n] generates a list of consecutive integers beginning
with 1 and ending with n. We study lists in a later chapter.

The library function product computes the product of the elements of a finite
list.

If we apply fact5 to a negative argument, the expression [1..n] generates an
empty list. Applying product to this empty list yields 1, which is the identity
element for multiplication. Defining fact5 to return 1 is consistent with the
function fact upon which it is based.

6

Which of the above definitions for the factorial function is better?

Most people in the functional programming community would consider fact4 (or
fact4') and fact5 as being better than the others. The choice between them
depends upon whether we want to trap the application to negative numbers as
an error or to return the value 1.

4.2.6 Testing

Chapter 10 discusses testing of the Factorial module designed in this chapter.
The test script is TestFactorial.hs.

4.3 Using the Glasgow Haskell Compiler (GHC)

See the Glasgow Haskell Compiler Users Guide for information on the Glasgow
Haskell Compiler (GHC) and its use.

GHCi is an environment for using GHC interactively. That is, it is a REPL
(Read-Evaluate-Print-Loop) command line interface using Haskell. The “Using
GHCi” chapter of the User Guide describes its usage.

Below, we show a GHCi session where we load source code file (module)
Factorial.hs and apply the factorial functions to various inputs. The in-
structor ran this in a Terminal session on an iMac running macOS 10.13.4 (High
Sierra) with ghc 8.4.3 installed.

1. Start the REPL.

bash-3.2$ ghci
GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help

2. Load module Fact that holds the factorial function definitions. This
assumes the Factorial.hs file is in the current directory. The load
command can be abbreviated as just :l.

Prelude> :load Factorial
[1 of 1] Compiling Factorial (Factorial.hs, interpreted)
Ok, one module loaded.

3. Inquire about the type of fact1.

*Factorial> :type fact1
fact1 :: Int -> Int

4. Apply function fact1 to 7, 0, 20, and 21. Note that the factorial of 21
exceeds the Int range.

*Factorial> fact1 7
5040

7

TestFactorial.hs
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html
Factorial.hs

*Factorial> fact1 0
1
*Factorial> fact1 20
2432902008176640000
*Factorial> fact1 21
-4249290049419214848

5. Apply functions fact2, fact3, fact4, and fact5 to 7.

*Factorial> fact2 7
5040
*Factorial> fact3 7
5040
*Factorial> fact4 7
5040
*Factorial> fact5 7
5040

6. Apply functions fact1, fact2, and fact3 to -1. All go into an infinite
recursion, eventually terminating with an error when the runtime stack
overflows its allocated space.

*Factorial> fact1 (-1)
*** Exception: stack overflow
*Factorial> fact2 (-1)
*Factorial> fact3 (-1)
*** Exception: stack overflow

7. Apply functions fact4 and fact4' to -1. They quickly return with an
error.

*Factorial> fact4 (-1)
*** Exception: Factorial.hs:(54,1)-(56,29):

Non-exhaustive patterns in function fact4
*Factorial> fact4' (-1)
*** Exception: fact4' called with negative argument
CallStack (from HasCallStack):

error, called at Factorial.hs:64:17 in main:Factorial

8. Apply function fact5 to -1. It returns a 1 because it is defined for negative
integers.

*Factorial> fact5 (-1)
1

9. Set the +s option to get information about the time and space required
and the +t option to get the type of the returned value.

*Factorial> :set +s
*Factorial> fact1 20
2432902008176640000

8

(0.00 secs, 80,712 bytes)
*Factorial> :set +t
*Factorial> fact1 20
2432902008176640000
it :: Int
(0.05 secs, 80,792 bytes)
*Factorial> :unset +s +t
*Factorial> fact1 20
2432902008176640000

10. Exit GHCi.

:quit
Leaving GHCi.

Suppose we had set the environment variable EDITOR to our favorite text editor
in the Terminal window. For example, on a Mac OS system, your instructor
might give the following command in shell (or in a startup script such as
.bash_profile):

export EDITOR=Aquamacs

Then the :edit command within GHCi allows us to edit the source code. We
can give a filename or default to the last file loaded.

:edit

Or we could also use a :set command to set the editor within GHCi.

:set editor Aquamacs
...
:edit

See the Glasgow Haskell Compiler Users Guide for more information about use
of GHC and GHCi.

4.4 What Next?

In this chapter, we looked at our first Haskell functions and how to execute them
using the Haskell interpreter.

In the next chapter, we continue our exploration of Haskell by examining its
built-in types.

4.5 Exercises

1. Reimplement functions fact4 and fact5 with type Integer instead of
Int. Using ghci, execute these functions for values -1, 7, 20, 21, and 50
using ghci.

9

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

2. Develop both recursive and iterative (looping) versions of a factorial fu-
unction in an imperative language (e.g. Java, C++, Python 3, etc.)

4.6 Acknowledgements

In Summer 2016, I adapted and revised much of this work in from Chapter 3
of my Notes on Functional Programming with Haskell [Cunningham 2014] and
incorporated it into Chapter 2, Basic Haskell Functional Programming, of my
2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I divided the previous Basic Haskell Functional
Programming chapter into four chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 2.1-2.3 became the basis for new Chapter 4, First Haskell
Programs (this chapter); previous Section 2.4 became Section 5.3 in the new
Chapter 5, Types; and previous sections 2.5-2.7 were reorganized into new
Chapter 6, Procedural Abstraction, and Chapter 7, Data Abstraction.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

4.7 References

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Bird 1998]: Richard Bird. Introduction to Functional Programming using
Haskell, Second Edition, Prentice Hall, 1998.

[Bird 2015]: Richard Bird. Thinking Functionally with Haskell, Second Edition,
Cambridge University Press, 2015.

[Chiusano 2015]] Paul Chiusano and Runar Bjarnason, Functional Program-
ming in Scala, Manning, 2015.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Thompson 1996]: Simon Thompson. Haskell: The Craft of Programming,
First Edition, Addison Wesley, 1996; Second Edition, 1999; Third Edition,
Pearson, 2011.

4.8 Terms and Concepts

Factorials, function definition and application, recursion, function domains,
error, if, guards, basic types (Int, Integer, Bool, Char, functions, tuples,
lists, String), type aliases, library (Prelude) functions, REPL, ghci commands
and use.

10

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	First Haskell Programs
	Chapter Introduction
	Defining Our First Haskell Functions
	Factorial function specification
	Factorial function using if-then-else: fact1
	Factorial function using guards: fact2
	Factorial function using pattern matching: fact3 and fact4
	Factorial function using built-in library function: fact5
	Testing

	Using the Glasgow Haskell Compiler (GHC)
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

