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CSci 555: Functional Programming
Fall 2010, Examination #2

1. (30 points) Show the list yielded by each of the following Haskell list expressions. If the list is
finite, display it using fully specified list bracket notation, e.g., expression [1..5] yields
[1,2,3,4,5]. If the list is infinite, display the list using the ellipsis “ · · · ” appropriately.
Assume that data type Color has been defined as follows:

data Color = Red | Orange | Yellow | Green | Blue | Violet | Grayscale Int
deriving Show

(a) [4..9]

(b) [9..4]

(c) [9,6..1]

(d) [ 2*i | i <- [1..10], odd i ]

(e) take 5 [ n*n | n <- [2..], even n ]

(f) [ j | i <- [1,-1,2,-2], j <- [1..i] ]

(g) [ (x,y) | x <- [1..3], y <- [Blue,Red] ]

(h) [ ys | (y:ys) <- ["Can", "you", "think", "recursively?"] ]

(i) [ Grayscale x | x <- [1..] ]

(j) let iterate f x = x : iterate f (f x)
sh [] = []
sh (x:xs) = xs

in takeWhile (/=[]) (iterate sh "ABCD")

2. (16 points) Remove the list comprehensions from the following expressions. That is, translate
the list comprehensions into expressions using one or more of the functions filter, map,
foldr, ++, fst, snd, zip, etc.

Functions fst and snd are prelude functions that extract the first and second components,
respectively, from two-component tuples. Function zip returns a list of pairs of the
corresponding elements of its two input lists.

(a) [x | x <- xs, p x]

(b) [f (g x) | x <- xs]

(c) [x | xs <- xss, x <- xs]

(d) [ i | (i,x) <- zip [1..] xs, p x]



3. (16 points) Consider the following definition for a factorial function fact in the Hugs version
of Haskell, which uses an accumulating parameter. Note the pattern match and the use of
the strict function.

fact :: Int -> Int -> Int
fact f 0 = f
fact f n = (strict fact (f*n)) (n-1)

Use string reduction as the model of computation.

(a) Briefly explain what is meant by normal order reduction? How are the redexes chosen
for reduction? Does this correspond to eager evaluation or lazy evaluation?

(b) Show the normal order reduction of the expression fact 1 3.

(c) What is maximum space used by the above reduction?

(d) When will normal order graph reduction produce a result in fewer steps than normal
order string reduction?

4. (10 points) The functional composition combinator is defined as follows:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

id :: a -> a
id x = x

(a) Prove that functional composition is associative. That is, for all f :: c -> d,
g :: b -> c, h :: a -> b, and x :: a, ((f . g) . h) x = (f . (g . h)) x.
(Hint: Ask yourself whether you need induction?)

(b) Also prove that id is the identity element for functional composition. That is, for any
f :: a -> b and x :: a, prove (id . f) x = f x = (f . id) x.

5. (4 points) One of the problem-solving strategies we discussed is “solving a harder problem
first”. Briefly describe this strategy.

6. (3 points) Suppose we have the following Haskell definitions.

x = 1:y
y = map f x
f = (*2)
g = take 10 x

What would be displayed on the screen when g is evaluated?.
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7. (25 points) An S-expression (i.e., symbolic expression as in the language Lisp) consists of a
number, a symbol, or a sequence of S-expressions.

If we use matched pairs of parentheses to denote sequences, then the S-expression
(3 (4 x) y) consists of a sequence of three elements. The elements, in order, are the number
3, the sequence (4 x), and the symbol y. The sequence (4 x) itself consists of the number 4
and the symbol x. (Note: The notation in this paragraph is not intended to be Haskell.)

An empty sequence of S-expressions is called a nil.

Now consider how to represent these S-expressions in Haskell. Let an object of type Sexpr
represent an S-expression:

data Sexpr = Num Int | Sym String | Seq [Sexpr]
deriving Show

The constructor Num i denotes a number with value i. The constructor Sym s denotes a
symbol with value s. The constructor Seq xs denotes the sequence of S-expressions given in
the Haskell list xs. If xs is [], then the sequence is a nil. Thus the S-expression (3 (4 x) y)
is represented in Haskell as (Seq [Num 3, Seq [Num 4, Sym "x"], Sym "y"]).

SELECT FIVE of the following functions and show Haskell definitions and type signatures.
You may use functions defined earlier in the list to define later ones.

(a) Function isNil takes an S-expression and returns True if the Sexpr is a nil and False
otherwise.

(b) Function cons takes an S-expression x and a sequence y and returns the sequence in
which x has been inserted in front of the elements of y. For example,
cons (Num 1) (Seq [Num 2]) returns (Seq [Num 1, Num 2]).

(c) Function car takes a non-nil sequence and returns the first S-expression in the sequence.
For example, car (Seq [Num 1,Num 2]) returns (Num 1).

(d) Function cdr takes a non-nil sequence and returns the sequence remaining after
removing the first element. For example, cdr (Seq [Num 1, Num 2]) returns
(Seq [Num 2]).

(e) Function equals takes two S-expressions and returns True if they are exactly the same
and returns False otherwise.

(f) Function append takes an S-expression x and an S-expression y and returns the
sequence in which the elements of y are appended after the elements of x. For example,
append (Seq [Num 1,Num 2]) (Seq [Num 3]) returns (Seq [Num 1,Num 2,Num 3]).

(g) Function rev takes an S-expression (e.g., a sequence) and returns the S-expression with
the elements in reverse order. For example, rev (Seq [Num 1, Seq [Num 0, Num 3],
Num 2]) returns (Seq [Num 2, Seq [Num 0, Num 3], Num 1]).
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