FUNCTIONS AS DATA: RECOGNIZING REGULAR EXPRESSIONS 269

12.12 Define a function
train :: Moves —> [Strategy] -> Strategy

which is supplied with a list of opponent’s moves to train it, and a list of possible
! strategies to use. The function should run all the strategies in the list on the list

| of moves, and choose the strategy which is most successful in winning against
' the given moves.

= W Y E

12.3 Functions as data: recognizing regular expressions
Regular expressions are patterns which can be used to describe sets of strings of char-

acters of various kinds, such as these.

o The identifiers of a programming language — strings of alphanumeric characters
which begin with an alphabetic character.

e The numbers — integer or real — given in a programming language.

e Regular expressions can also be used to extend the pattern language in a program-

ming language, allowing functions to match in more powerful ways than those
built in.

There are five sorts of pattern, or regular expression:

€ This is the Greek character epsilon, which matches the empty string.
% x 18 any character. This matches the character itself.

(rilry) r; and ry are regular expressions.

(riry) ry and r, are regular expressions.

(r)= T 1s a regular expression.

Examples of regular expressions include (a| (ba)), ((ba) | (¢] (a)*)) and hello.In
order to give a more readable version of these, it is assumed that * binds more tightly
than juxtaposition (i.e. (rir,)), and that Juxtaposition binds more tightly than |. This
means that riro* will mean (ry (r,)*), not ((ryry))*, and that ry | rors will mean
ry | (rors), not (rylry)rs.

Regular expressions are patterns, so we need to describe which strings match each regular

expression.
€ The empty string matches epsilon.
X The character x matches the pattern x, for any character x.

(rylry) The string st will match (r, [T9) if st matches either ry or ry (or both).

(riry) The string st will match (ryr,) if st can be split into two substrings st
and sty, st = sty++sts,, so that st matches ry and st, matches r,.

(r)* The string st will match (r) * if st can be split into zero or more substrings,
St = sti++styt++. . ++st,, each of which matches r. The zero case im-
plies that the empty string will match () * for any regular expression r.

270 DEVELOPING HIGHER-ORDER PROGRAMS

Let’s build a model of regular expressions in Haskell; we choose to embed them as
functions from String to Bool, which is the function which recognizes exactly the
strings matching the pattern.

type RegExp = String -> Bool

Now we define the five different kinds of regular expression, starting off with epsilon,
€, which is matched by the empty string only. We use an operator section to define the
function:

epsilon :: RegExp
epsilon = (=="")

We use a similar definition for the function that recognizes a single character, passed in
as its argument

char :: Char -> RegExp
char ch = (==[ch])

We next define the Haskell operator | | |, which implements the ‘or’ operation, |. Ap-
plying this to el and e2 gives a function which takes the string x to the ‘or’ of the two
values el x and €2 x:

(I111) :: RegExp -> RegExp -> RegExp

el [|] e2 =
\x > el x || e2 x

Sequencing the match of two regular expressions is given by the Haskell <*> operator.
In defining this we’ll use the function splits that returns a list of all the ways that a
string can be split in two

SPlitS llspyll ~s [(u " s llspyll) s (usu s upyu) s (uspn s nyu)) (uspyu , " n)]
Now we can give the definition of <*>
(<*>) :: RegExp -> RegExp -> RegExp

el <¥> e2 =
\x > or [el y &% e2 z | (y,z) <~ splits x]

How does this definition work? The list comprehension runs through all the splits of
the input string, x. For each of these we test whether the front half (y) matches the first
pattern (el) by applying el to x, and similarly we apply e2 to the second half of the
string (z). Since we need both matches to succeed, we combine the results with ‘and’,
&&. The result of this is to give a list of the answers for each split: we only need one of
these to succeed, and so we combine the results with the built-in function or that takes
the ‘or’ of a list of Boolean values.

FUNCTIONS AS DATA: RECOGNIZIN G REGULAR EXPRESSIONS 271

We can define the star operation using the operators that we’ve already defined,
like this:

star :: RegExp -> RegExp
star p = epsilon ||| (p <*> star p)

The definition says ’to match (p) *, either match it zero times (epsilon) or match p
followed by (p)*’. What is elegant about this is that we just used the operators | | | and
<>, together with recursion, to make the definition at the level of the RegExp type; we
didn’t need to think about star p being a function.

Getting star right ' ke iy

There is a flaw in the definition of star that ‘we have just given: 1f it i_s»"'pqss;ible
for p to match the empty string, i.e. if p ""is Tfﬁé,"thén"the‘deﬁﬁiti‘c’)hf‘iﬁay, go
into an infinite loop. S L : LT o SR e e

We need to modify the definition of star to say instead that * -
star p = epsilon ||| (p: <**> star p)

where <#*> is defined like <*> except that it omits the split (", st) from splits
st. This change is enough to make sure that the infinite loop is avoided, as it means
that the first match of p can’t be with an empty string, and so the next match of
(p) * must be on a shorter string. ;

Exercises
12.13 Define the function

splits :: [a] -> ([a],[a])

which defines the list of all the ways that a list can be split in two (see the
example of splits "Spy" above).

12.14 By trying it with a number of examples, which strings does this regular expres-
sion match?

star ((a ||l b) <*> (a [[] b))
where a and b are defined by

a, b :: RegExp

a = char ’a’

b = char b’

12.15 Which strings does this regular expression match?

star (star ((a ||| b) <*> (a ||| b))

272

12.16

12.17

12.18

12.19

12.4

DEVELOPING HIGHER-ORDER PROGRAMS

Define functions
option, plus :: RegExp —-> RegExp

where option e matches zero or one occurrences of the pattern e, and plus
e matches one or more occurrences of the pattern e.

Define regular expressions which match

e Strings of digits which begin with a non-zero digit.

e Fractional numbers: two strings of digits separated by ’.’; make sure that
these numbers have no superfluous zeroes at the beginning or the end, so
exclude strings like "01.34" and "1.20".

In doing this you might find it useful to define a function

range :: Char -> Char -> RegExp

so that, for example, range ’A’ ’Z’ will match any capital letter.
Give regular expressions describing the following sets of strings

All strings of as and bs containing at most two as.

All strings of as and bs containing exactly two as.

All strings of as and bs of length at most three.

All strings of as and bs which contain no repeated adjacent characters, that
is no substring of the form aa or bb.

[Hard] Add to the regular expressions the facility to name substrings that match
particular sub-expressions, so that instead of returning a Bool a RegExp will
return a list of bindings of names to substrings.

Why a list? First, it allows for no matching to happen (empty list, [1) or for
multiple matches, which can also happen as matching the regular expressions
(riry) and (r)* can succeed in multiple different ways.

Case studies: functions as data

This section introduces a number of shorter case studies which use functions to represent
data. First we show then we can model natural numbers as higher-order functions, next
we look at graphics can be represented by functions, in a ‘bit-mapped’ style.

Natural numbers as functions

We can represent the natural numbers 0, 1, 2, ... by functions of type

type Natural a = (a -> a) -> (a > a)

where the number n is represented by ‘apply the argument n times’, sO

zero f
one f
two £

= id
£
f.f

