Local search algorithms

- Some types of search problems can be formulated in terms of **optimization**
 - We don’t have a start state, don’t care about the path to a solution
 - We have an **objective function** that tells us about the quality of a possible solution, and we want to find a good solution by minimizing or maximizing the value of this function
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space:** all possible n-queen configurations
- What’s the **objective function**?
 - Number of pairwise conflicts
Hill-climbing (greedy) search

- Idea: keep a single “current” state and try to locally improve it
- “Like climbing mount Everest in thick fog with amnesia”
The state space “landscape”

- How to escape local maxima (minima)?
 - Random restart hill-climbing
- What about “shoulders”?
- What about “plateaus”?
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space:** all possible n-queen configurations
- **Objective function:** number of pairwise conflicts
- What’s a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts
Example: \(n \)-queens problem (cont’d)

\[h = 17 \]
Hill-climbing (greedy) search

function HILL-CLIMBING(problem) returns a state that is a local maximum

current ← MAKE-NODE(problem INITIAL-STATE)
loop do
 neighbor ← a highest-valued successor of current
 if neighbor.VALUE ≤ current.VALUE then return current.STATE
 current ← neighbor

• Variants: choose first better successor, randomly choose among better successors
• Variants to avoid local maxima, plateaus, shoulders, ridges, etc.
Hill-climbing search

• Is it complete/optimal?
 • No – can get stuck in local optima
 • Example: local optimum for the 8-queens problem
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
 - Probability of taking downhill move decreases with number of iterations, steepness of downhill move
 - Controlled by *annealing schedule*
- Inspired by tempering of glass, metal
Simulated annealing search

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"

current ← MAKE-NODE(problem.INITIAL-STATE)
for t = 1 to ∞ do
    T ← schedule(t)
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← next.VALUE - current.VALUE
    if ΔE > 0 then current ← next
    else current ← next only with probability \[e^{ΔE/T}\]
```
Simulated annealing search

• If temperature decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching one.

• However:
 • This usually takes impractically long
 • The more downhill steps you need to escape a local optimum, the less likely you are to make all of them in a row
Local beam search

Start with k randomly generated states
Repeat
 Generate all the successors of all k states
 If a goal state is generated, stop
 Else select the k best successors from the complete list
Until some stopping condition

• Better than running k greedy searches in parallel.

• Stochastic beam search chooses k successors at random, proportional to the “goodness” of the state.
Genetic algorithms (GA)

- Variant of stochastic beam search, inspired by “natural selection”
- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

(a) Initial Population
(b) Fitness Function
(c) Selection
(d) Cross-Over
(e) Mutation

Genetic algorithms
Genetic algorithms

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
 FITNESS-FN, a function that measures the fitness of an individual

repeat
 new_population ← empty set
 for i = 1 to SIZE(population) do
 x ← RANDOM-SELECTION(population, FITNESS-FN)
 y ← RANDOM-SELECTION(population, FITNESS-FN)
 child ← REPRODUCE(x, y)
 if (small random probability) then child ← MUTATE(child)
 add child to new_population
 population ← new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(x, y) returns an individual
inputs: x, y, parent individuals

n ← LENGTH(x); c ← random number from 1 to n
return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))