1. Using the alphabet $\Sigma = \{a, b\}$. Draw an NFA that accepts strings that begin and end with the same character. Assume λ, a, and b are not accepted.

2. Given the language $L = \{a^{2i}b^{2j+1} : i \geq 1, j \geq 0\}$

 (a) Mark each of the following strings as Accepted (A) if it is in L, or Not accepted (N) if it is not.

 - ______ λ
 - ______ b
 - ______ aabbb
 - ______ aabbb
 - ______ aaaa
 - ______ aab

 (b) Draw a DFA or NFA that accepts the language.

3. Consider the language on $\{0, 1\}^*$ that contains strings that do not end in 01. The DFAs below are incorrect. Give an example string for each DFA that shows the DFA is not correct. Note: You can use different counterexample strings for each DFA, you don’t have to find one string that is a counterexample to both.

 (a) Attempt #1: Use Figure 1.

 Counterexample string: __________

 (b) Attempt #2: Use Figure 2.

 Counterexample string: __________

 (c) Give a correct DFA for the language.

4. Consider the NFA in Figure 3:

 (a) Give two syntactic reasons why the above FA is an NFA.

 (b) Convert the NFA to a DFA. Show your work (e.g. the δ^* values) and draw the DFA.