
Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 116

PIC � A Graphics Language for Typesetting
Revised User Manual

Brian W. Kernighan

December, 1984

PIC � A Graphics Language for Typesetting
Revised User Manual

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

PIC is a language for drawing simple figures on a typesetter. The basic objects in
PIC are boxes, circles, ellipses, lines, arrows, arcs, spline curves, and text. These may be
placed anywhere, at positions specified absolutely or in terms of previous objects. The
example below illustrates the style and basic capabilities of the language.

document PIC
TBL/EQN
(optional)

TROFF typesetter

This picture was created with the input

.PS
ellipse "document"
arrow
box "PIC"
arrow
box "TBL/EQN" "(optional)" dashed
arrow
box "TROFF"
arrow
ellipse "typesetter"
.PE

PIC is a TROFF preprocessor; it passes most of its input through untouched, but
translates commands between.PS and .PE into TROFF commands that draw the pic-
tures.

This manual describes the version ofPIC made available in December, 1984.

December, 1984

PIC � A Graphics Language for Typesetting
Revised User Manual

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

PIC is a language for drawing pictures. It operates as yet anotherTROFF [%R Comp. Sci. Tech.
Rept. 54 %I Bell Laboratories %C Murray Hill, New Jersey %A J. F. Ossanna %T NROFF/TROFF User’s
Manual %D October 1976 %C Murray Hill, N.J. %D January 1979 preprocessor (in the same style asEQN
[%A Brian W. Kernighan %A Lorinda L. Cherry %T A System for Typesetting Mathematics %J Commu-
nications of the ACM %V 18 %N 3 %D 1975 %P 151-157 %K cacm acmTBL [%R Comp. Sci. Tech.
Rept. 49 %I Bell Laboratories %C Murray Hill, New Jersey %A M. E. Lesk %T Tbl� A Program to For-
mat Tables %D September 1976 %J UNIX Programmer’s Manual %V 2 %O Section 10 %I Bell Laborato-
ries %C Murray Hill, N.J. %D January 1979 andREFER[%R Comp. Sci. Tech. Rept. 69 %A M. E. Lesk
%T Some Applications of Inverted Indexes on the UNIX System %D 1978 %J UNIX Programmer’s Man-
ual %V 2 %O Section 11 %I Bell Laboratories %C Murray Hill, N.J. %D January 1979 with pictures
marked by.PS and.PE .

PIC was inspired partly by Chris Van Wyk’s early work onIDEAL [%T A High-Level Language for
Specifying Pictures %A C. J. Van Wyk %J ACM Transactions on Graphics %V 1 %N 2 %D 1982 %P
163-182 it has somewhat the same capabilities, but quite a different flavor. In particular,PIC is much more
procedural�a picture is drawn by specifying (sometimes in painful detail) the motions that one goes
through to draw it. Other direct influences include thePICTURE language [%A John C. Beatty %T PIC-
TURE � A picture-drawing language for the Trix/Red Report Editor %R Lawrence Livermore Laboratory
Report UCID-30156 %D April 1977 the V viewgraph language [%A Anon. %T V� A viewgraph gener-
ating language %R Bell Laboratories internal memorandum %D May 1979 and, more recently, new fea-
tures from theGRAP language [%A J. L. Bentley %A B. W. Kernighan %T GRAP� A Language for
Typesetting Graphs %R Bell Laboratories Comp. Sci Tech. Rept. 114 %D December, 1984 for typesetting
graphs.

This paper is primarily a user’s manual forPIC; a discussion of design issues and user experience
may be found in [%A B. W. Kernighan %T PIC� A Language for Typesetting Graphics %J Software
Practice & Experience %D January, 1982 %V 12 %N 1 %P 1-21 The next section shows how to usePIC in
the most simple way. Subsequent sections describe how to change the sizes of objects when the defaults
are wrong, and how to change their positions when the standard positioning rules are wrong. An appendix
describes the language succinctly and summarizes changes since the last manual.

2. Basics

PIC provides boxes, lines, arrows, circles, ellipses, arcs, and splines (smooth curves), plus facilities
for positioning and labeling them. The picture below shows all of the fundamental objects (except for
splines) in their default sizes:

box
line arrow

circle ellipse arc

Each picture begins with.PS and ends with.PE ; between them are commands to describe the picture.
Each command is typed on a line by itself. For example

- 2 -

.PS
box "this is" "a box"
.PE

creates a standard box (¾ inch wide, ½ inch high) and centers the two pieces of text in it:

this is
a box

Each line of text is a separate quoted string. Quotes are mandatory, even if the text contains no
blanks. (Of course there needn’t be any text at all.) Each line will be printed in the current size and font,
centered horizontally, and separated vertically by the currentTROFF line spacing.PIC does not center the
complete drawing itself, but the default definitions of.PS and.PE in the-ms macro package do.

You can usecircle or ellipse in place ofbox :

this is
a box

this is
a box

Text is centered on lines and arrows; if there is more than one line of text, the lines are centered
above and below:

line "this is" "a line"

this is
a line

arrow "this is" "an arrow"

this is
an arrow

Boxes and lines may be dashed or dotted; just add the worddashed or dotted afterbox or line :

line dashed "dashed" "line"

dashed
line

Arcs by default turn 90 degrees counterclockwise from the current direction; you can make them turn
clockwise by sayingarc cw :

line; arc; arc cw; arrow

A spline might well do this job better; we will return to that shortly.

As you might guess,

arc; arc; arc; arc

draws a circle, though not very efficiently. Notice that several commands can be put on a single line if they
are separated by semicolons.

Objects are normally drawn one after another, left to right, and connected at the obvious places:

arrow; box "input"; arrow; box "process"; arrow; box "output"; arrow

- 3 -

input process output

One way to leave a space is withmove:

box; move; box; move; box

Although objects are normally connected left to right, this can be changed. If you specify a direction
(as a separate object), subsequent objects will be joined in that direction:

down; box; arrow; ellipse; arrow; circle

left; box; arrow; ellipse; arrow; circle

Each new picture begins going to the right.

Normally, figures are drawn at a fixed scale, with objects of a standard size. It is possible, however,
to arrange that a figure be expanded or shrunk to fit a particular width. If the.PS line contains a number,
the drawing is forced to be that many inches wide, with the height scaled proportionately. Thus

.PS 3.5

causes the picture to be 3.5 inches wide.

PIC is pretty dumb about the size of text in relation to the size of boxes, circles, and so on. There is
no way to say ‘‘make a box that just fits around this text’’ or ‘‘make this text fit inside this circle’’ or
‘‘draw a line as long as this text.’’ Tight fitting of text can generally only be done by trial and error.

Speaking of errors, if you make a grammatical error in the way you describe a picture,PIC will com-
plain and try to indicate where. For example, the invalid input

- 4 -

box arrow box

will draw the message

pic: syntax error near line 5, file -
context is

box >>> arrow <<< box

The brackets point to the place where the error was first noted; it sometimes follows the word in error,
although in this example it’s right on target.

3. Controlling Sizes

This section deals with how to control the sizes of objects when the ‘‘default’’ sizes are not what is
wanted. The next section deals with positioning them when the default positions are not right.

Each object thatPIC knows about (boxes, circles, etc.) has associated dimensions, like height, width,
radius, and so on. By default,PIC tries to choose sensible default values for these dimensions, so that sim-
ple pictures can be drawn with a minimum of fuss and bother. All of the figures and motions shown so far
have been in their default sizes:

box ¾" wide × ½" high
circle ½" diameter
ellipse ¾" wide × ½" high
arc ½" radius
line or arrow ½" long
move ½" in the current direction

When necessary, you can make any object any size you want:

box width 3 height 0.1; circle radius 0.1

All positions and dimensions are in inches, so the box is 3 inches wide and 1/10 inch high and the circle has
radius 1/10 inch.

An attribute like width changes only the one instance of the object. You can also change the
default size for all objects of a particular type by assigning values toPIC variables; this will be discussed in
Section 6.

The attributes ofheight (which you can abbreviate toht) andwidth (or wid) apply to boxes,
circles, ellipses, and to the head on an arrow. The attributes ofradius (or rad) and diameter (or
diam) can be used for circles and arcs if they seem more natural.

Lines and arrows are most easily drawn by specifying the amount of motion from where one is right
now, in terms of directions. Accordingly the wordsup , down, left andright and an optional distance
can be attached toline , arrow , andmove:

line up 1 right 2
arrow left 2
move left 0.1
line <-> down 1 "height " rjust

height

- 5 -

The notation<-> indicates a two-headed arrow; use-> for a head on the end and<- for one on the start.
Lines and arrows are really the same thing; in fact,arrow is a synonym forline -> .

If you don’t specify any distance afterup , down, etc.,PIC uses the standard distance:

line up right; line down; line down left; line up

If you omit the direction associated with a distance, the current direction is used.

Boxes and lines may be dotted or dashed:

box dotted; line dotted; move; line dashed; box dashed

.
..
..
..
.............................

.

If there is a number afterdot , the dots will be approximately that far apart. You can also control the size
of the dashes (at least somewhat): if there is a length after the worddashed , the dashes will be that long,
and the intervening spaces will be as close as possible to that size:

line right 5 dashed; move left 5 down .25; right
line right 5 dashed 0.25; move left 5 down .25; right
line right 5 dashed 0.5; move left 5 down .25; right
line right 5 dashed 1

Dotted or dashed attributes apply only to lines and boxes.

You can make any object invisible by adding the wordinvis after it. This is particularly useful for
positioning things correctly near text:

box invis "input"; arrow; box invis "output"

input output

Text may be positioned on lines and arrows:

arrow "on top of"; move
arrow "above" "below"; move
arrow "above" above; move
arrow "below" below; move
arrow "above" "on top of" "below"

- 6 -

on top of
above
below

above
below

above
on top of

belowThe ‘‘width’’ of an arrowhead is the distance across its tail; the ‘‘height’’ is the distance along the
shaft. The arrowheads in this picture are default size and shape.

As we said earlier, arcs go 90 degrees counterclockwise from where you are right now, andarc cw
changes this to clockwise. The default radius is the same as for circles, but you can change it with therad
attribute. It is also easy to draw arcs between specific places; this will be described in the next section.

To put an arrowhead on an arc, use one of<- , -> or <-> , as with lines.

In all cases, unless an explicit dimension for some object is specified, you will get the default size. If
you want an object to have the same size as the previous one of that kind, add the wordsame. Thus in the
set of boxes given by

down; box ht 0.2 wid 1.5; move down 0.15; box same; move same; box same

the dimensions set by the firstbox are used several times; similarly, the amount of motion for the second
move is the same as for the first one.

You can change the default sizes of objects by assigning values to the variables that define their val-
ues. Here is the list, with their default values:

boxwid = 0.75; boxht = 0.5
linewid = 0.75; lineht = 0.5
circlerad = 0.25; arcrad = 0.25
ellipsewid = 0.75; ellipseht = 0.5
movewid = 0.75; moveht = 0.5
textwid = 0; textht = 0
arrowwid = 0.05; arrowht = 0.1 (These refer to the arrowhead.)
dashwid = 0.05; arrowhead = 2 (Arrowhead fill style)

So if you want all your boxes to be long and skinny, and relatively close together,

boxwid = 0.1; boxht = 1
movewid = 0.2
box; move; box; move; box

Setting the variablearrowhead to a value like 7 causes arrowheads to be filled by overstriking; the
default is 2:

arrowhead = 7; arrow; move; arrowhead = 2; arrow

- 7 -

PIC works internally in inches. Setting the variablescale to some value causes all dimensions to be
scaled down by that value. Thus, for example,scale=2.54 causes dimensions to be interpreted as cen-
timeters.

The number given as a width in the.PS line overrides the dimensions given in the picture; this can
be used to force a picture to a particular size even when coordinates have been given in inches. Experience
indicates that a good way to get a picture of the right size is to enter its dimensions in inches, then if neces-
sary add a width to the.PS line.

Once set, variables likeboxht retain their values from one picture to the next. You can reset vari-
ables to their default values by listing them in areset statement:

reset boxht, boxwid

A barereset resets all variables.

4. Controlling Positions

You can place things anywhere you want;PIC provides a variety of ways to talk about positions.PIC
uses a standard Cartesian coordinate system, so any point or object has anx andy position, measured in
inches. The first object is placed with its start at position 0,0 by default. Thex,y position of a box, circle or
ellipse is its geometrical center; the position of a line or motion is its beginning; the position of an arc is the
center of the corresponding circle.

Position modifiers likefrom , to , by andat are followed by anx,y pair, and can be attached to
boxes, circles, lines, motions, and so on, to specify or modify a position.

You can also useup , down, right , andleft with line andmove:

box ht 0.2 wid 0.2 at 0,0 "1"
move right 0.5 # or "move to 0.5,0"
box ht 0.2 wid 0.2 "2"
move right 0.5 # or "move 0.5" or "move same"
box ht 0.2 wid 0.2 "3"

1 2 3

Comments can be used in pictures; they begin with a# and end at the end of the line.

Attributes likeht andwid and positions likeat can be written out in any order. So

box ht 0.2 wid 0.2 at 0,0
box at 0,0 wid 0.2 ht 0.2
box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less desirable.

The from and to attributes are particularly useful with arcs, to specify the endpoints. By default,
arcs are drawn counterclockwise,

"+" at 0,0
arc -> from 0.5,0 to 0,0.5
arc -> cw from 0,0 to 1,0.5

+

The radius can be made large to provide flat arcs:

arc -> cw from 0,0 to 2,0 rad 15

- 8 -

If the circle is under-specified,PIC guesses a radius and/or center; you will have to provide them explicitly
if the guess is wrong.

We said earlier that objects are normally connected left to right. This is an over-simplification. The
truth is that objects are connected together in the direction specified by the most recentup , down, left or
right (either alone or as part of some object). Thus, in

arrow left; box; arrow; circle; arrow

the left implies connection towards the left:

This could also be written as

left; arrow; box; arrow; circle; arrow

Objects are joined in the order determined by the lastup , down, etc., with the entry point of the sec-
ond object attached to the exit point of the first (which is fixed at the time of entry). Entry and exit points
for boxes, circles and ellipses are on opposite sides. This automatic connection and direction selection
works well if the direction doesn’t change but it will occasionally surprise you:

arrow; circle; down; arrow

The arrow comes out of the right side of the circle, not the bottom, as might be expected.

If a set of commands is enclosed in braces{...} , the current position and direction of motion when
the group is finished will be exactly where it was when entered. Nothing else is restored. There is also a
more general way to group objects, using[and] , which is discussed in Section 9.

5. Labels and Corners

Objects can be labelled or named so that you can talk about them later. For example,

Box1: box
... other stuff ...
move to Box1

Place namesmust begin with an upper case letter (to distinguish them from variable names, which begin
with lower case letters). The name refers to the ‘‘center’’ of the object, which is the geometric center for
most things.

Other combinations also work:

line from Box1 to Box2
move to Box1 up 0.1 right 0.2
move to Box1 + 0.2,0.1 # same as previous
line to Box1 - 0.5,0

The reserved nameHere may be used to record the current position of some object:

Box1: Here

- 9 -

Labels are variables � they can be reset several times in a single picture, so a statement like

Box1: Box1 + 1,1

is perfectly legal.

You can also refer to previously drawn objects of each type, using the wordlast . For example,
given the input

box "A"; circle "B"; box "C"

then ‘last box ’ refers to boxC, ‘ last circle ’ refers to circleB, and ‘2nd last box ’ refers to box
A. Numbering of objects can also be done from the beginning, so boxesA andC are ‘1st box ’ and ‘2nd
box ’ respectively.

To cut down the need for explicit coordinates, objects have ‘‘corners’’ named by compass points:

B: box "B.c" ht 1 wid 1.5
" B.e" at B.e ljust
" B.ne" at B.ne ljust
" B.se" at B.se ljust
"B.s" at B.s below
"B.n" at B.n above
"B.sw " at B.sw rjust
"B.w " at B.w rjust
"B.nw " at B.nw rjust

B.c B.e

B.ne

B.se
B.s

B.n

B.sw

B.w

B.nw

Note the use ofljust , rjust , above , andbelow to alter the default positioning of text, and of a blank
within some strings to help space them away from a vertical line.

Lines and arrows have astart , an end and a center in addition to corners. Circles and ellipses
have corners too; an arc has the same corners as the circle of which it is a part. The wordsleft , right ,
top , andbottom are synonyms forwest , east , north andsouth .

It is sometimes easiest to position objects by positioning some part of one at some part of another, for
example the northwest corner of one at the southeast corner of another. Thewith attribute permits this
kind of positioning:

box ht 0.75 wid 0.75
box ht 0.5 wid 0.5 with .sw at last box.se

Notice that the corner afterwith is written.sw .

As another example, consider

ellipse
ellipse ht .2 wid .3 with .se at 1st ellipse.nw
ellipse ht .2 wid .3 with .sw at 1st ellipse.ne

- 10 -

Sometimes it is desirable to have a line intersect a circle at a point which is not one of the eight com-
pass points thatPIC knows about. In such cases, the proper visual effect can be obtained by using the
attributechop to chop off part of the line:

circlerad = 0.15; arrowhead = 7
circle "a"
circle "b" at 1st circle - (0.4, 0.6)
circle "c" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 1st circle to 3rd circle chop

a

b c

By default the line is chopped bycirclerad at each end. This may be changed:

line ... chop r

chops both ends byr, and

line ... chop r1 chop r2

chops the beginning byr1 and the end byr2. More complicated intersections can be computed with the
built-in trigonometric functions listed in the next section.

There is one other form of positioning that is sometimes useful, to refer to a point some fraction of
the way between two other points. This can be expressed inPIC as

fraction of the way between position1 and position2

fraction is any expression, andposition1andposition2 are any positions. You can abbreviate this rather
windy phrase; ‘‘of the way’’ is optional, and the whole thing can be written instead as

fraction < position1 , position2 >

As a pair of examples:

box
arrow right from 1/3 of the way between last box.ne and last box.se
arrow right from 2/3 <last box.ne, last box.se>

- 11 -

A: ellipse
ellipse ht .2 wid .3 with .se at 1st ellipse.nw
ellipse ht .2 wid .3 with .sw at 1st ellipse.ne
circle rad .05 at 0.5 <A.nw,A.c>
circle rad .05 at 0.5 <A.ne,A.c>
arc from 0.25 <A.w,A.e> to 0.75 <A.w,A.e>

Naturally, the distance given byfraction can be greater than 1 or less than 0.

6. Variables, Expressions and Built-in Functions

It’s generally a bad idea to write everything in absolute coordinates if you are likely to change things.
PIC variables let you parameterize your picture:

a = 0.5; b = 1

box wid a ht b
ellipse wid a/2 ht 1.5*b
Box2: Box1 - (a/2, b/2)

Expressions may use the standard operators+, - , * , / , and%, and parentheses for grouping.

The most important variables are the predefined ones for controlling the default sizes of objects,
listed in Section 3. These may be set at any time in any picture, and retain their values from picture to pic-
ture until reset.

You can use the height, width, radius, andx andy coordinates of any object or corner in an expres-
sion:

Box1.x # the x coordinate of the center of Box1
Box1.ne.y # the y coordinate of the northeast corner of Box1
Box1.wid # the width of Box1
Box1.ht # and its height
2nd last circle.rad # the radius of the 2nd last circle

Any pair of expressions enclosed in parentheses defines a position; furthermore such positions can
be added or subtracted to yield new positions:

(x, y)
(x1, y1) + (x2, y2)

If p1 andp2 are positions, then (p1 ,p2) refers to the point (p1 .x , p2 .y).

PIC provides a small collection of standard functions:

sin (expr), cos (expr), atan2 (y,x) (angle in radians)
log (expr), exp (expr) (Beware: both base 10)
sqrt (expr), max(e1 ,e2), min (e1 ,e2)
int (expr) (integer part ofexpr)
rand () (random number between 0 and 1)

7. More on Text

Normally, text is centered at the geometric center of the object it is associated with. The attribute
ljust causes the left end to be at the specified point (which means that the text lies to the right of the
specified place!), andrjust puts the right end at the place.above andbelow center the text one half
line space in the given direction.

- 12 -

Text attributes can be compounded:

arrow 1 "ljust above" ljust above

ljust above

Text is most often an attribute of some other object, but you can also have self-standing text:

"origin" "(0,0)" at 0,0
"this is" "(1,1)" at 1,1
box ht 1 wid 1 dotted with .sw at 0,0

origin
(0,0)

this is
(1,1)

.
..
..
..
..
..
..
..
..
..

In effect,n text strings are contained in an invisible box of widthtextwid and heightn × textht . The
variablestextwid andtextht may be set to any values; they are normally zero.

A list of numeric expressions can be converted to a formatted string with thesprintf function and
used anywhere a quoted string can be:

B: box wid log(20)
sprintf("width = %g, height = %g ", B.wid, B.ht) rjust at B.w

width = 1.30103, height = 0.5

8. Lines and Splines

A ‘‘line’’ may actually be a path, that is, it may consist of connected segments:

line right 1 then down .5 left 1 then right 1

A spline is a smooth curve guided by a set of straight lines just like the line above. It begins at the
same place, ends at the same place, and in between is tangent to the mid-point of each guiding line. The
syntax for a spline is identical to a (path) line except for usingspline instead ofline :

line dashed right 1 then down .5 left 1 then right 1
spline from start of last line \

right 1 then down .5 left 1 then right 1

(Long input lines can be split by ending each piece with a backslash.)

- 13 -

The elements of a path, whether for line or spline, are specified as a series of points, either in absolute
terms or byup , down, etc. If necessary to disambiguate, the wordthen can be used to separate compo-
nents, as in

spline right then up then left then down ->

which is evidently not the same as

spline right then up left then down ->

Notice that arrowheads may be put on the ends of a line or spline.

9. Blocks

Any sequence ofPIC statements may be enclosed in brackets[...] to form a block, which can then
be treated as a single object, and manipulated rather like an ordinary box:

box "1"
[box "2"; arrow "3" above; box "4"] with .n at last box.s - (0,0.1)
"Thing 2: " rjust at last [].w

1

2
3

4Thing 2:

Notice that ‘‘last’’-type constructs treat blocks as a unit and don’t look inside for objects: ‘‘last box.s ’’
refers to box 1, not box 2 or 4. You can uselast [] , etc., just likelast box .

Blocks have the same compass corners as boxes (determined by the bounding box). It is also possi-
ble to position a block by placing either an absolute coordinate (like0,0) or an internal label (likeA) at
some external point, as in

[...; A: ...; ...] with .A at ...

By default, blocks join with other things as boxes do, at the center of the appropriate side.

Names of variables and places within a block are local to that block, and thus do not affect variables
and places of the same name outside. (In particular, that includes the built-in variables likeboxwid , etc.;
if they are set within a block, they revert to their original values when the block is left.) You can get at the
internal place names with constructs like

last [].A

or

B.A

whereB is a name attached to a block:

- 14 -

B: [... ; A: ...;]

When combined withdefine statements (next section), blocks provide a reasonable simulation of a pro-
cedure mechanism.

Although blocks nest, it is currently possible to look only one level deep with constructs likeB.A ,
althoughA may be further qualified by a corner name (i.e.,B.A.sw or top of B.A are legal).

The following example illustrates most of the points made above about how blocks work:

h = .5; dh = .02; dw = .1
[

Ptr: [
boxht = h; boxwid = dw
A: box
B: box
C: box
box wid 2*boxwid "..."
D: box

]
Block: [

boxht = 2*dw; boxwid = 2*dw
movewid = 2*dh
A: box; move
B: box; move
C: box; move
box invis "..." wid 2*boxwid; move
D: box

] with .t at Ptr.s - (0,h/2)
arrow from Ptr.A to Block.A.nw + (dh,0)
arrow from Ptr.B to Block.B.nw + (dh,0)
arrow from Ptr.C to Block.C.nw + (dh,0)
arrow from Ptr.D to Block.D.nw + (dh,0)

]
box dashed ht last [].ht+dw wid last [].wid+dw at last []

This produces

...

...

10. Macros

PIC provides a basic macro facility. In the simplest form,

define name X replacement textX

definesnameto be thereplacement text; X is any character that does not appear in the replacement. Any
subsequent occurrence ofnamewill be replaced byreplacement text.

Macros may have arguments. If the replacement text of a macro definition contains occurrences of
$1 , $2 , etc., these will be replaced by the corresponding actual arguments when the macro is invoked. The
invocation for a macro with arguments is

name(arg1, arg2, ...)

Non-existent arguments are replaced by null strings. Macro definitions last from picture to picture; a macro

- 15 -

definition can be removed by

undef macro-name

As an example, one might define asquare by

define square X box ht $1 wid $1 $2 X

and use it as

square(1, "one" "inch")
square(0.5)
square(0.25, "\s-4tiny\s+4" dashed)

one
inch

tiny

Notice how the second argument may be used to pass in arbitrary contents.

Coordinates likex,y may be enclosed in parentheses, as in (x,y), so they can be included in a macro
argument.

11. File Copy

The statement

copy " filename"

inserts the contents of the named file at that point in the input. Any.PS or .PE lines within the file are
ignored, so previously prepared pictures can be used as parts of larger ones without editing.

PIC also provides thecopy thru mechanism found inGRAP:

copy " file" thru macro-name

copiesfile, treating each line as an invocation of the named macro (each field being an argument). A literal
macro may be used instead of a name:

copy " file" thru X macro replacement textX

and if no file name is given, the remainder of the input until the next.PE is used. So to plot a set of circles
at points whose coordinates and radii are included in-line:

copy thru / circle rad $3 at $1,$2 /
0 0 .05
1 1 .1
...

- 16 -

Thesh command executes an arbitrary commandline:

sh X anything X

As always,X is any character not inanything.

12. Loops and Conditionals

PIC provides anif statement and afor loop.

.ps -2
pi = atan2(0,-1)
for i = 0 to 2 * pi by 0.1 do X

" �" at i/2, 0
"s" at i/2, sin(i)/2
"c" at i/2, cos(i)/2

X
.ps +2

�s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s
c

�

sc

�

sc

�

s
c

�

s
c

�

s

c

�

s

c

�

s

c
�

s

c
�

s

c
�

s

c�

s

c
�

s

c
�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�
s

c

�s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s
c

�

sc

�

sc

�

s
c

�

s

c

�

s

c

�

s

c
�

s

c
�

s

c�

s

c�

s

c
�

s

c
�

s

c
�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�

s

c

�s

c

The by clause is optional; if the value is preceded by a* , the steps are multiplicative, not additive. The
body of the loop is delimited by any character not found within it, or, in a special dispensation for program-
mers, by braces, which may also be used for definitions,copy , sh andif statements.

The if statement is

if expressionthen X anything X else X anything X

where theelse clause is optional. Theexpressionmay use the usual relational operators:==, != , >, >=,
<, <=, &&, and|| .

pi = atan2(0,-1)
for i = 0 to pi by 0.1 do {

if (s = sin(i)) > 0.8 then { s = 0.8 }
"x" at i/2, s/2

}

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A string comparison using== or != is also permitted, to compare quoted strings:

if " string1" == " string2" then ...

13. TROFF Interface

PIC is usually run as aTROFFpreprocessor:

pic file | troff -ms

Run it beforeEQN if it is also present.

If the .PS line looks like

.PS <file

- 17 -

then the contents offile are inserted in place of the.PS line, whether or not the file contains.PS or
.PE . (This feature is deprecated in favor of thecopy statement.)

PIC copies the.PS and .PE lines from input to output intact, except that it adds two things on the
same line as the.PS :

.PS h w

h andw are the picture height and width in units. The-ms macro package has simple definitions for.PS
and.PE that cause pictures to be centered and offset a bit from surrounding text. (See the appendix.)

If ‘‘ .PF ’’ is used instead of.PE , the position after printing is restored to where it was before the pic-
ture started, instead of being at the bottom. (‘‘F’’ is for ‘‘flyback.’’)

Any input line that begins with a period is assumed to be aTROFFcommand that makes sense at that
point; it is copied to the output at that point in the document. It is asking for trouble to add vertical space or
in any way fiddle with the line spacing here, but point size and font changes are generally harmless:

.ps 24
circle radius .4 at 0,0
.ps 12
circle radius .2 at 0,0
.ps 8
circle radius .1 at 0,0
.ps 6
circle radius .05 at 0,0
.ps 10 \" don’t forget to restore size

PIC does preserve the state ofTROFF’s fill mode across pictures.

It is also safe to include sizes, fonts and local motions within quoted strings ("...") in PIC, so long
as whatever changes are made are unmade before exiting the string. For example, to print text in Old
English 2 points larger:

ellipse "\s+2\f(OESmile!\fP\s-2"

Smile!

This is essentially the same rule as applies in EQN.

There is a subtle problem with complicated equations insidePIC pictures� they come out wrong if
EQN has to leave extra vertical space for the equation. If your equation involves more than subscripts and
superscripts, you must add to the beginning of each equation the extra informationspace 0 :

arrow
box "$space 0 {H(omega)} over {1 - H(omega)}$"
arrow

1− H(É)
H(É)_________

- 18 -

PIC output is largely independent of any particular typesetter, but in the rare case that you have to say
something to it, the-T option makes the choice, as in

pic -Taps ...

The typesetter type may also be set with the environment variableTYPESETTER.

14. Some Examples

Herewith a handful of larger examples:

.

.

.

hashtab:

... n1 d1 n3 d3 ... n2 d2

ndblock

ndtable:

define ndblock {
box wid boxwid/2 ht boxht/2
down; box same with .t at bottom of last box; box same

}
boxht = .2; boxwid = .3; circlerad = .3; dx = 0.05
down; box; box; box; box ht 3*boxht "." "." "."
L: box; box; box invis wid 2*boxwid "hashtab:" with .e at 1st box .w
right
Start: box wid .5 with .sw at 1st box.ne + (.4,.2) "..."
N1: box wid .2 "n1"; D1: box wid .3 "d1"
N3: box wid .4 "n3"; D3: box wid .3 "d3"
box wid .4 "..."
N2: box wid .5 "n2"; D2: box wid .2 "d2"
arrow right from 2nd box
ndblock
spline -> right .2 from 3rd last box then to N1.sw + (dx,0)
spline -> right .3 from 2nd last box then to D1.sw + (dx,0)
arrow right from last box
ndblock
spline -> right .2 from 3rd last box to N2.sw-(dx,.2) to N2.sw+(dx,0)
spline -> right .3 from 2nd last box to D2.sw-(dx,.2) to D2.sw+(dx,0)
arrow right 2*linewid from L
ndblock
spline -> right .2 from 3rd last box to N3.sw + (dx,0)
spline -> right .3 from 2nd last box to D3.sw + (dx,0)
circlerad = .3
circle invis "ndblock" at last box.e + (1.2,.2)
arrow dashed from last circle.w to last box chop 0 chop .3
box invis wid 2*boxwid "ndtable:" with .e at Start.w

- 19 -

source

code

lexical

analyzer

tokens
parser

intermediate

code

semantic

checker

lexical

corrector

syntactic

corrector

diagnostic

message

printer

symbol

table

.PS 5

.ps 8
arrow "source" "code"

LA: box "lexical" "analyzer"
arrow "tokens" above

P: box "parser"
arrow "intermediate" "code"

Sem: box "semantic" "checker"
arrow

arrow <-> up from top of LA
LC: box "lexical" "corrector"

arrow <-> up from top of P
Syn: box "syntactic" "corrector"

arrow up
DMP: box "diagnostic" "message" "printer"

arrow <-> right from right of DMP
ST: box "symbol" "table"

arrow from LC.ne to DMP.sw
arrow from Sem.nw to DMP.se
arrow <-> from Sem.top to ST.bot

.PE

There are eighteen objects (boxes and arrows) in the picture, and one line ofPIC input for each; this
seems like an acceptable level of verbosity.

- 20 -

DISK
character

defns

CPU

(16-bit mini)

input

CRT

... paper

rollers

Basic Digital Typesetter

.PS

.ps -2
circle "DISK"
arrow "character" "defns"

CPU: box "CPU" "(16-bit mini)"
{ arrow <- from top of CPU up "input " rjust }
arrow

CRT: " CRT" ljust
line from CRT - 0,0.075 up 0.15 \

then right 0.5 \
then right 0.5 up 0.25 \
then down 0.5+0.15 \
then left 0.5 up 0.25 \
then left 0.5

Paper: CRT + 1.05,0.75
arrow <- from Paper down 1.5
" ... paper" ljust at end of last arrow + 0, 0.25
circle rad 0.05 at Paper + (-0.055, -0.25)
circle rad 0.05 at Paper + (0.055, -0.25)
" rollers" ljust at Paper + (0.1, -0.25)

.ps +2

.PE

.ce
Basic Digital Typesetter

15. Final Observations

The fundamental approach inPIC � Cartesian coordinates and real measurements� is not the easi-
est thing in the world to work with, although it does have the merit of being in some sense sufficient. Much
of the syntactic sugar (or corn syrup)� corners, joining things implicitly, etc.� is aimed at making posi-
tioning and sizing automatic, or at least relative to previous things, rather than explicit.

Nonetheless,PIC does offer some positive values. Most notably, it is integrated with the rest of the
standard Unix document preparation software. In particular, it positions text correctly in relation to graphi-
cal objects; this is not true of any of the interactive graphical editors that I am aware of. It can even deal
with equations in a natural manner, modulo thespace 0 nonsense alluded to in Section 13.

A standard question is, ‘‘Wouldn’t it be better if it were interactive?’’ The answer seems to be both
yes and no. If one has a decent input device such as a mouse, interaction is certainly better for sketching
out a figure. But it is hard to state and preserve relationships between objects with purely graphical input,
and it is tedious to do precision drafting, especially of repetitive constructs. These are easy with textual
descriptions. Finally, and perhaps most important, it is possible to generatePIC input from a program.
GRAP is merely the most recent in a set of such programs, none of which would be feasible with the inter-
active systems I know of.

- 21 -

In any case, the issue is far from settled; comments and suggestions are welcome.

Acknowledgements

I am indebted to Chris Van Wyk for ideas from several versions ofIDEAL . He and Doug McIlroy
have also contributed algorithms for line and circle drawing, and made useful suggestions on the design of
PIC. Theo Pavlidis contributed the basic spline algorithm; Eric Grosse provided code to compute the
bounding box of an arc. Charles Wetherell pointed out reference [6] to me, and made several valuable criti-
cisms on an early draft of the language and manual. The exposition in this manual has been greatly
improved by suggestions from Jim Blinn and Mark Miller. I am grateful to my early users� Brenda
Baker, Dottie Luciani, and Paul Tukey� for their suggestions and cheerful use of an often shaky and
clumsy system.

The most recent version ofPIC has benefited greatly from adventurous use by Jon Bentley and Ravi
Sethi; their comments on this edition of the manual are also much appreciated.

References [LIST]

- 22 -

Appendix A: PIC Reference Manual

Pictures

The top-level object inPIC is the ‘‘picture’’:

picture:
.PS optional-width optional-height
element-list
.PE

If optional-width is present, the picture is made that many inches wide, regardless of any dimensions used
internally. The height is scaled in the same proportion unlessoptional-heightis present. If instead the line
is

.PS <f

the file f is inserted in place of the.PS line. If .PF is used instead of.PE , the position after printing is
restored to what it was upon entry.

Elements

An element-listis a list of elements (what else?); the elements are

element:
primitive attribute-list
placename: element
placename: position
var = expr
direction
{ element-list }
[element-list]
for var = expr to expr by expr do X anything X
if expr then X anything X else X anything X
copy file
copy thru macro
copy file thru macro
sh X commandlineX
print expr
reset optional var-list
troff-command

Elements are separated by newlines or semicolons; a long element may be continued by ending the
line with a backslash. Comments are introduced by a# and terminated by a newline.

Variable names begin with a lower case letter; place names begin with upper case. Place and variable
names retain their values from one picture to the next.

The current position and direction of motion are saved upon entry to a{...} block and restored
upon exit.

Elements within a block enclosed in[...] are treated as a unit; the dimensions are determined by
the extreme points of the contained objects. Names, variables, and direction of motion within a block are
local to that block.

troff-commandis any line that begins with a period. Such a line is assumed to make sense in the con-
text where it appears; accordingly, if it doesn’t work, don’t call.

Primitives

The primitive objects are

- 23 -

primitive:
box
circle
ellipse
arc
line
arrow
spline
move
text-list

arrow is a synonym forline -> .

Attributes

An attribute-list is a sequence of zero or more attributes; each attribute consists of a keyword, per-
haps followed by a value.

attribute:
h(eigh)t expr wid(th) expr
rad(ius) expr diam(eter) expr
up opt-expr down opt-expr
right opt-expr left opt-expr
from position to position
at position with corner
by expr, expr then
dotted opt-expr dashed opt-expr
chop opt-expr -> <- <->
invis same
text-list expr

Missing attributes and values are filled in from defaults. Not all attributes make sense for all primitives;
irrelevant ones are silently ignored. The attributeat causes the geometrical center to be put at the specified
place;with causes the position on the object to be put at the specified place. For lines, splines and arcs,
height andwidth refer to arrowhead size. A bareexpr implies motion in the current direction.

Text

Text is normally an attribute of some primitive; by default it is placed at the geometrical center of the
object. Stand-alone text is also permitted. Atext-list is a list of text items; a text item is a quoted string
optionally followed by positioning requests:

text-item:
"..." positioning ...
sprintf(" format", expr, ...) positioning ...

positioning:
center ljust rjust above below

If there are multiple text items for some primitive, they are centered vertically except as qualified. Posi-
tioning requests apply to each item independently.

Text items can containTROFF commands for size and font changes, local motions, etc., but make
sure that these are balanced so that the entering state is restored before exiting.

Positions and places

A position is ultimately anx,y coordinate pair, but it may be specified in other ways.

- 24 -

position:
expr, expr
place ± expr, expr
place ± (expr, expr)
(position, position)
expr [of the way] between position and position
expr < position , position >
(position)

place:
placename optional-corner
corner of placename
nth primitive optional-corner
corner of nth primitive
Here

An optional-corneris one of the eight compass points or the center or the start or end of a primitive.

optional-corner:
.n .e .w .s .ne .se .nw .sw .c .start .end

corner:
top bot left right start end

Each object in a picture has an ordinal number;nth refers to this.

nth:
nth
nth last

Since barbarisms like1th and3th are barbaric, synonyms like1st and3st are accepted as well.

Variables

The built-in variables and their default values are:

boxwid 0.75 boxht 0.5
circlerad 0.25 arcrad 0.25
ellipsewid 0.75 ellipseht 0.5
linewid 0.5 lineht 0.5
movewid 0.5 moveht 0.5
textwid 0 textht 0
arrowwid 0.05 arrowht 0.1
dashwid 0.1 arrowhead 2
scale 1

These may be changed at any time, and the new values remain in force from picture to picture until changed
again or reset by areset statement. Variables changed within[and] revert to their previous value upon
exit from the block. Dimensions are divided byscale during output.

Expressions

Expressions inPIC are evaluated in floating point. All numbers representing dimensions are taken to
be in inches.

- 25 -

expr:
expr op expr
- expr
! expr
(expr)
variable
number
place .x
place .y
place .ht
place .wid
place .rad
sin(expr) cos(expr) atan2(expr,expr) log(expr) exp(expr)
sqrt(expr) max(expr,expr) min(expr,expr) int(expr) rand()

op:
+ - * / %
< <= > >= == != && ||

Definitions

Thedefine andundef statements are not part of the grammar.

define:
define name X replacement textX

undef:
undef name

Occurrences of$1 , $2 , etc., in the replacement text will be replaced by the corresponding arguments if
nameis invoked as

name(arg1, arg2, ...)

Non-existent arguments are replaced by null strings.Replacement textmay contain newlines. Theundef
statement removes the definition of a macro.

The .PS and .PE Macros

This is the default definition of the.PS and.PE macros:

.de PS \" start picture; $1 is height, $2 is width, in inches

.sp .3

.in (\\n(.lu-\\$2)/2u

.ne \\$1

..

.de PE \" end of picture

.in

.sp .6

..

Summary of New Features

The built-in functionssin , cos , atan2 , log , exp , sqrt , max, min , int , andrand are avail-
able.

Thecopy statement includes data from a file or that follows immediately:

copy " filename"
copy thru macro
copy " filename" thru macro

Themacro may be either the name of a defined macro, or the body of a macro enclosed in some character
not part of the body. If no filename is given,copy copies the input until the next.PE .

- 26 -

Thefor andif statements provide loops and decision-making:

for var=expr to expr by expr do X anything X
if expr then X anything X else X anything X

The by andelse clauses are optional. Theexpr in an if may use the usual relational operators or the
testsstr1 == (or !=) str2 for two quoted strings.

Thesh command executes any sequence of commands:

sh X anything X

In all of the above, braces{...} may be used in place ofX...X .

Text strings are now first-class citizens: a statement beginning with a sequence of text strings is
treated as an invisible box with the strings positioned at its center. The variabletextht and textwid
may be set to any values to control positioning. The height ofn such strings isn × textht .

It is possible to convert expressions to formatted strings:

sprintf(" format", expr, expr, ...)

is equivalent to a quoted string in any context. Variants of%f and%gare the only sensible format conver-
sions.

Built-in variables may be reset to default values withreset .

Theundef statement removes a macro definition.

Arrowheads may be filled with thearrowhead variable; their positioning is improved on arcs.

The width and height of the generated picture may be set independently from the.PS line.

The state of fill or no-fill mode is preserved around a picture.

Input numbers may be expressed inE notation.

Numerous internal changes have been made as well. Any number of objects, text strings, etc., may
be used; the only limit is total available memory. Output is now produced in inches instead of units for a
particular typesetter, so most need for the-T option has gone away.

