
Building Domain-Speci�c Embedded LanguagesPaul HudakDepartment of Computer ScienceYale UniversityJune 3, 1996I have believed for a very long time that abstraction is the most important factor in writinggood software. As programming language researchers we design, and as software engineers we aretrained to use, a variety of abstraction mechanisms: abstract data types, higher-order functions,monads, continuations, modules, classes, objects, etc. Particular languages support some ofthese mechanisms well, others not so well. An important point about these mechanisms is thatthey are fairly general|for example, most algorithmic strategies and computational structurescan be implemented using either functional or object-oriented abstraction techniques.Although generality is good, we might ask what the \ideal" abstraction for a particularapplication is. In my opinion, it is a programming language that is designed precisely for thatapplication: one in which a person can quickly and e�ectively develop a complete softwaresystem. It is not general at all; it should capture precisely the semantics of the applicationdomain|no more and no less. In my opinion, a domain-speci�c language is the \ultimateabstraction."But we know all too well how di�cult designing and implementing languages is, and we canbe pretty sure that we won't get it right the �rst time; it will evolve, and we will experienceall of the di�culties associated with that evolution. So in fact the notion of a domain speci�clanguage might not be very practical. Or is it?In this position paper I will outline several techniques that I believe can lead to the e�ectiveuse of this methodology. It begins with the assumption that we really don't want to builda programming language from scratch. Better, let's inherit the infrastructure of some otherlanguage|tailoring it in special ways to the domain of interest|thus yielding a domain-speci�cembedded language (DSEL). Building on this base, we can then concentrate on semantical issues:viz. the interpreter of the language. Interestingly, we'll see that abstraction now kicks in at thisleta-level: we can use abstraction techniques to build interpreters that are themselves easy tounderstand, highly modular, and straightforward to evolve.In the remainder of this paper I will describe the results of using the functional languageHaskell to build DSELs. Haskell has several features that make it particularly suitable for this,but other languages could also be used. On the other hand, there are features that don't exist inany language (to my knowledge) that would make things even easier; there is much more workto be done.Domain Speci�c Semantics It is surprisingly straightforward to design a DSEL for manyspeci�c applications. We have done so already using Haskell in several domains: parser gen-eration, graphics, animation, simulation, music composition, and geometric region analysis, to1

-- Geometric regions are represented as functions:type Region = Point -> Bool-- so to test a point's membership in a region, we do:inRegion :: Point -> Region -> Boolp `inRegion` r = r p-- Given suitable definitions of "circle", "outside", and /\:circle :: Radius -> Region -- creates a region with given radiusoutside :: Region -> Region -- the logical negation of a region(/\) :: Region -> Region -> Region -- the intersection of two regions-- we can then define a function to generate an annulus:annulus :: Radius -> Radius -> Regionannulus r1 r2 = outside (circle r1) /\ circle r2Figure 1: Example of a DSEL for a Naval Applicationname a few. The latter domain|geometric region analysis|came about through an experimentconducted jointly by Arpa, ONR, and the Naval Surface Warfare Center. This well-documentedexperiment (see [Car93, CHJ93, LBK�94]) demonstrates not only the viability of the DSELapproach, but also its evolvability. Three di�erent versions of the system were developed, eachcapturing more advanced notions of the target system, with no a priori knowledge of the changesthat would be required. The modularity a�orded by the DSEL made these non-trivial changesquite easy to incorporate.The resulting notation is not only easy to design, it's also easy to use and reason about.Because the domain semantics is captured concisely, it is possible even for non-programmersto understand much of the code. In the NSWC experiment, those completely unfamiliar withHaskell were able to grasp the concepts immediately; some even expressed disbelief that thecode was actually executable. In Figure 1 we highlight some of the code to give the reader afeel for its simplicity and clarity.Finally, the DSEL approach is highly amenable to formal methods, for many of the reasonsalready mentioned. The key point is that one can reason directly within the domain semantics,rather than within the semantics of the programming language. In the NSWC experimentwe straightforwardly proved several properties of our DSEL that would have been much moredi�cult to prove in most of the competing designs.Modular Monadic Interpreters A DSEL in Haskell can be thought of as a higher-orderalgebraic structure, a �rst-class value that has the \look and feel" of syntax. In some sense it isjust a notation; its semantics is captured by an interpreter. This permits another opportunityfor modular design, in turn facilitating evolution of the system since changes in the domainsemantics are in many cases inevitable.The design of truly modular interpreters has been an elusive goal in the programming lan-guage community for many years. In particular, one would like to design the interpreter so thatdi�erent language features can be isolated and given individualized interpretations in a \buildingblock" manner. These building blocks can then be assembled to yield languages that have onlya few, a majority, or even all of the individual language features. Progress by Moggi, Espanol,and Steele [Mog89, Ste94, Esp93] laid the groundwork for our recent e�ort at producing a truly2

callcc

Arithmetic Ops

Function CallsAssignments

Continuations

:=

+,-,*,/

lambda

pure lambda calculus

continuations

store

environment

Modular construction

of the kernel

callcc

update

err

inEnvrdEnv

error reportingFigure 2: Modular monadic interpreter structuremodular interpreter for a non-trivial language [LHJ95], and basing modular compiler construc-tion technology on it [LH96, Lia96]. The use of monads [PJW93, Wad90] to structure the designwas critical.Our approach means that language features can be added long after the initial design, even ifthey involve fundamental changes in the interpreter functionality. For example, we have built aseries of languages and interpreters that begin with a small calculator language (just numbers),then a simple �rst-order language with variables, then a higher-order language with severalcalling conventions, then a language with errors and exceptions, and so on, as suggested inFigure 2. At each level the new language features can be added, along with their semantics,without altering any previous code.It is also possible with this approach to capture not only domain-speci�c semantics, but alsodomain-speci�c optimizations. These optimizations can be done incrementally and indepen-dently from each other and from the core semantics. We have used this to implement traditionalcompiler optimizations [LH96, Lia96], but the same techniques could be used for domain-speci�coptimizations.A conventional interpreter maps, say, a term, environment, and store, to an answer. Incontrast, a monadic interpreter such as ours maps terms to computations, where the details ofthe environment, store, etc. are \hidden" in the computation. Speci�cally:interp :: Term -> InterpM Valuewhere InterpM Value is the interpreter monad of �nal answers.What makes our interpreter modular is that all three components above|the term type,the value type, and the monad|are con�gurable. To illustrate, if we initially wish to have aninterpreter for a small number-expression language, we can �ll in the de�nitions as follows:type Value = OR Int Bottomtype Term = TermAtype InterpM = ErrorT IdThe �rst line declares the answer domain to be the union of integers and bottom. The secondline de�nes terms as TermA, the abstract syntax for arithmetic operations. The �nal line de�nesthe interpreter monad as a transformation of the identify monad Id. The monad transformerErrorT accounts for the possibility of errors; in this case, arithmetic exceptions. At this pointthe interpreter behaves like a calculator: 3

Standard
Interpreter

Program
&

Input

Standard
Answer

&
Operator

Monitor
Specification

Monitoring
Interpreter

Monitoring
Information

Figure 3: System diagramRun> ((1+4)*8)40Run> (3/0)ERROR: divide by 0Now if we wish to add function calls, we can extend the value domain with function types,add the abstract syntax for function calls to the term type, and apply the monad transformerEnvT Env to introduce an environment Env.type Value = OR Int (OR Function Bottom)type Term = OR TermF TermAtype InterpM = EnvT Env (ErrorT Id)Here is a test run:Run> ((\x.(x+4)) 7)11Run> (x+4)ERROR: unbound variable: xWe can further add other features such as conditionals, lazy evaluation, letrec declarations,nondeterminism, continuations, tracing, pro�ling, and even references and assignment, to ourinterpreter. Whenever a new value domain (such as Boolean) is needed, we extend the Valuetype; and to add a new semantic feature (such as a store or continuation), we apply the corre-sponding monad transformer.Instrumentation Despite the importance in software development of language tools such asdebuggers, pro�lers, tracers, and performance monitors, traditionally they have been treatedin rather ad hoc ways. I believe that a more disciplined approach to designing such tools willbene�t the software development process. Indeed we have a methodology for tool generationthat shares much with previous identi�ed goals: it is highly-modular, domain-speci�c, andevolvable. Under this scheme, tools can be layered onto the system without a�ecting eachother; changes and additions are thus easily accomplished. A tool speci�ed in our frameworkcan be automatically combined with the corresponding standard semantics to yield a compositesemantics that incorporates the behaviors of both. Figure 3 is a
ow diagram for the overallmethodology, and Figure 4 shows its compositional nature.4

Scheme
semantics ➧

Debugger
specification

Profiler
specification

Scheme
debugging and
profiling
semantics

&
M

S

S

&
M

S

S➦

➧

➦
➧Figure 4: Composing monitors

System Functionality:

Meta :: Interpreter ✘ Monitor ✘ Program ✘ Input ➔ (Answer,MonInfo)

Specializing the interpreter w.r.t. monitor.

Meta :: Instrumented-Interpreter ✘ Program ✘ Input ➔ (Answer, MonInfo)

Specializing the instrumented interpreter w.r.t. a program
[Safra & Shapiro] .

Meta :: Instrumented-Program ✘ Input ➔ (Answer, MonInfo)

PE

PEFigure 5: Partial evaluation optimization levelsPartial Evaluation. In order to use DSELs and their corresponding modular interpretersin a practical sense, we can use program transformation and partial evaluation technology toimprove performance. For example, we can use partial evaluation to optimize the composedinterpreters described previously in two ways: (1) specializing the tool generator with respectto a tool speci�cation automatically yields a concrete tool; i.e. an interpreter instrumented withtool actions, and (2) specializing the tool itself (from the previous step) with respect to a sourceprogram produces an instrumented program; i.e. a program with embedded code to perform thetool actions. Figure 5 provides a useful viewpoint of these two levels of optimization.We have used existing partial evaluation techniques to do this, but it was painful. I feelthat more user-friendly techniques are needed. In particular, in contrast to a fully-automatedapproach, a semi-automated approach would have two advantages: First, automatic approacheshave not matured enough in recent years to give us the con�dence we need to meet our goals.Second, I think that it's important for the user to have better, more explicit control over thetransformation process. Reasoning about the behavior of fully-automated systems can be di�-cult, and it gets worse as the sophistication of the automation increases.References[Car93] J. Caruso. Prototyping Demonstration Problem for the Prototech HiPer-D JointPrototyping Demonstration Project. CCB Report 0.2, Naval Surface Warfare Center,August 1993. Last modi�ed October 27, 1993; further changes speci�ed by J. Carusoare described in "Addendum to Prototyping Demonstration Problem for the PrototechHiPer-D Joint Prototyping Demonstration Project," November 9, 1993.[CHJ93] W.E. Carlson, P. Hudak, and M.P. Jones. An Experiment Using Haskell To Prototype5

"Geometric Region Servers" for Navy Command And Control. Research Report 1031,Department of Computer Science, Yale University, November 1993.[Esp93] David Espinosa. Modular Denotational Semantics. Unpublished manuscript, Decem-ber 1993.[LBK�94] J.A.N. Lee, B. Blum, P. Kanellakis, H. Crisp, and J.A. Caruso. ProtoTech HiPer-DJoint Prototyping Demonstration Project, February 1994. Unpublished; 400 pages.[LH96] Sheng Liang and Paul Hudak. Modular Denotational Semantics for Compiler Con-struction. In European Symposium on Programming, April 1996.[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and Modular In-terpreters. In Proceedings of 22nd ACM Symposium on Principles of ProgrammingLanguages, pages 333{343, New York, January 1995. ACM Press.[Lia96] Sheng Liang. Modular Monadic Semantics and Compilation. PhD thesis, Yale Uni-versity, Department of Computer Science, November 1996.[Mog89] E. Moggi. Computational Lambda-Calculus and Monads. In Proceedings of Sympo-sium on Logic in Computer Science. IEEE, June 1989.[PJW93] S. Peyton Jones and P. Wadler. Imperative Functional Programming. In Proceedings20th Symposium on Principles of Programming Languages. ACM, January 1993. (toappear).[Ste94] Guy L. Steele Jr. Building Interpreters by Composing Monads. In Conference Recordof POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-ming Languages, Portland, Oregon, pages 472{492, New York, January 1994. ACMPress.[Wad90] P. Wadler. Comprehending Monads. In Proceedings of Symposium on Lisp and Func-tional Programming, pages 61{78, Nice, France, June 1990. ACM.

6

