
Exploring Languages with Interpreters
and Functional Programming

Chapter 80

H. Conrad Cunningham

20 February 2019

Contents
80 Review of Relevant Mathematics 1

80.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
80.2 Natural Numbers and Ordering . . . . . . . . . . . . . . . . . . . 2
80.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
80.4 Recursive Functions . . . . . . . . . . . . . . . . . . . . . . . . . 3
80.5 Mathematical Induction Natural Numbers . . . . . . . . . . . . . 3
80.6 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
80.7 Algebraic Structures . . . . . . . . . . . . . . . . . . . . . . . . . 7
80.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
80.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 7
80.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
80.11Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 8

Copyright (C) 2016, 2017, 2018, 2019, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of Feburary 2019 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu


80 Review of Relevant Mathematics

80.1 Chapter Introduction

Students studying from this textbook should already have sufficient familiarity
with the relevant mathematical concepts from the usual prerequisite courses.
However, they may need to relate the mathematics with the programming
constructs in functional programming.

The goal of this chapter is to review the mathematical concepts of functions and
a few other mathematical concepts used in these notes. The concept of function
in functional programming corresponds closely to the mathematical concept of
function.

TODO: Add discussion of logic needed for specification and statement of laws?

80.2 Natural Numbers and Ordering

Several of the examples in these notes use natural numbers.

For this study, we consider the set of natural numbers N to consist of 0 and the
positive integers.

Inductively, n ∈ N if and only if one of the following holds

• n = 0
• There exists m ∈ N such that m = S(n)

where S is the successor function, which returns the next element.

Furthermore,

• No element is the successor of more one other natural number.
• 0 is not the successor of any natural number. That is, it is the least (base)

element.

The natural numbers thus form a totally ordered set in conjunction with the
binary relation ≤ (less or equal). That is, the relation ≤ satisfies the following
properties on set N :

• n ≤ n for all n ∈ N (reflexivity)
• m ≤ n and n ≤ m implies m = n (antisymmetry)
• m ≤ n and n ≤ p implies m ≤ p (transitivity)
• Either m ≤ n or n ≤ m for all m, n ∈ N (trichotomy)

It is also a partial ordering because it satisfies the first three properties above.

For all m, n ∈ N , we can define the other ordering relations in terms of =, 6=,
and ≤ as follows:

2



• m < n (less) to mean m ≤ n and m 6= n. We say that m is smaller (or
simpler) than n.

• m > n (greater) to mean n ≤ m and n 6= m. We say that m is larger (or
more complex) than n.

• m ≥ n (greater or equal) to mean the same as n ≤ m

80.3 Functions

As we have studied in mathematics courses, a function is a mapping from a set
A into a set B such that each element of A is mapped into a unique element of
B.

• The set A (on which f is defined) is called the domain of f .
• The set of all elements of B into which f maps elements of A is called the

range (or codomain) of f , and is denoted by f(A).

If f is a function from A into B, then we write:

f : A→ B

We also write the equation

f(a) = b

to mean that the value (or result) from applying function f to an element a ∈ A
is an element b ∈ B.

If a function

f : A→ B

and A ⊆ A′, then we say that f is a partial function from A′ to B and a total
function from A to B. That is, there are some elements of A′ on which f may
be undefined.

80.4 Recursive Functions

Informally, a recursive function is a function defined using recursion.

In computing science, recursion is a method in which an “object” is defined in
terms of smaller (or simpler) “objects” of the same type. A recursion is usually
defined in terms of a recurrence relation.

A recurrence relation defines an “object” xn as some combination of zero or more
other “objects” xi for i < n. Here i < n means that i is smaller (or simpler)
than n. If there is no smaller object, then n is a base object.

For example, consider a recursive function to compute the sum s of the first n
natural numbers.

3



We can define a recurrence relation for s with the following equations:

s(n) = 0, if n = 0
s(n) = n + s(n− 1), if n ≥ 1

For example, consider s(3),

s(3) = 3+s(2) = 3+(2+s(1)) = 3+(2+(1+s(0))) = 3+(2+(1+0)) =
6

80.5 Mathematical Induction Natural Numbers

We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments.

We can define fact using the product operator as follows:

fact(n) =
∏i=n

i=1 i

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n− 1), if n ≥ 1

It is, of course, easy to see that the recurrence relation definition is equivalent
to the previous definition. But how can we prove it?

To prove that the above definitions of the factorial function are equivalent, we
can use mathematical induction over the natural numbers.

Mathematical induction: To prove a logical proposition P (n) holds for any
natural number n, we must show two things:

• For the base case n = 0, show that P (0) holds.
• For the inductive case n = m + 1, show that, if P (m) holds for some

natural number m, then P (m + 1) also holds.

The P (m) assumption is called the induction hypothesis.

Now let’s prove that the two definitions fact and fact’ are equivalent.

Prove For all natural numbers n, fact(n) = fact’(n).

Base case n = 0.

fact(0)
= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ 0 : i)
= { empty range for Π, 1 is the identity element of × }

1
= { definition of fact’ (first leg, right to left) }

4



fact’(0)

Inductive case n = m + 1.
Given induction hypothesis fact(m) = fact’(m), prove fact(m + 1) =fact’(m + 1).

fact’(m + 1)
= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ m + 1 : i)
= { m + 1 > 0, so m + 1 term exists, split it out }

(m + 1)× (Πi : 1 ≤ i ≤ m : i)
= { definition of fact (right to left) }

(m + 1)× fact(m)
= { induction hypothesis }

(m + 1)× fact’(m)
= { m + 1 > 0, definition of fact’ (second leg, right to left) }

fact’(m + 1)

Therefore, we have proved fact(n) = fact’(n) for all natural numbers n. QED

In the inductive step above, we explicitly state the induction hypothesis and
assertion we wish to prove in terms of a different variable name (m instead of
n) than the original statement. This helps to avoid the confusion in use of the
induction hypothesis that sometimes arises.

We use an equational style of reasoning. To prove that an equation holds, we
begin with one side and prove that it is equal to the other side. We repeatedly
“substitute equals for equal” until we get the other expression.

Each transformational step is justified by a definition, a known property of
arithmetic, or the induction hypothesis.

The structure of this inductive argument closely matches the structure of the
recursive definition of fact’.

What does this have to do with functional programming? Many of the functions
we will define in these notes have a recursive structure similar to fact’. The
proofs and program derivations that we do will resemble the inductive argument
above.

Recursion, induction, and iteration are all manifestations of the same phe-
nomenon.

80.6 Operations

A function

5



⊕ : (A×A)→ A

is called a binary operation on A. We usually write binary operations in infix
form:

a ⊕ a’

We often call a two-argument function of the form

⊕ : (A×B)→ C

a binary operation as well. We can write this two argument function in the
equivalent curried form:

⊕ : A→ (B → C)

The curried form shows a multiple-paramenter function in a form where the
function takes the arguments one at a time, returning the resulting function
with one fewer arguments.

Let ⊕ be a binary operation on some set A and x, y, and z be elements of A.
We can define the following kinds of properties.

• Operation ⊕ is closed on A if and only if x⊕ y ∈ A for any x, y ∈ A. That
is, the operation is a total function on its domain.

• Operation ⊕ is associative if and only if (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for
x, y, z ∈ A.

• Operation ⊕ is commutative (also called symmetric) if and only if x⊕ y =
y ⊕ x for x, y ∈ A.

• An element e of set A is

– a left identity of ⊕ if and only if e⊕ x = x for any x ∈ A
– a right identity of ⊕ if and only if x⊕ e = x for any x ∈ A
– an identity of ⊕ if and only if it is both a left and a right identity.

An identity of an operation is called a unit of the operation.

• An element z of set A is

– a left zero of ⊕ if and only if z ⊕ x = z for any x ∈ A
– a right zero of ⊕ if and only if x⊕ z = z for any x ∈ A
– a zero of ⊕ if and only if it is both a right and a left zero

• If e is the identity of ⊕ and x⊕ y = e for some x and y, then

– x is a left inverse of y
– y is a right inverse of x.

Elements x and y are inverses of each other if x⊕ y = e = y ⊕ x.

• An element x of set A is idempotent if x⊕ x = x.

6



If all elements of A are idempotent with respect to ⊕, then ⊕ is called
idempotent.

For example, the addition operation + on natural numbers is closed, associative,
and commutative and has the identity element 0. It has neither a left or right
zero element and the only element with a left or right inverse is 0. If we consider
the set of all integers, then all elements also have inverses.

Also, the multiplication operation * on natural numbers (or on all integers) is
closed, associative, and commutative and has identity element 1 and zero element
0. Only value 1 has a left or right inverse.

However, the subtraction operation on natural numbers is not closed, associative,
or commutative and has neither a left nor right zero. The value 0 is subtraction’s
right identity, but subtraction has no left identity. Each element is its own right
and left inverse. If we consider all integers, then the operation is also closed.

Also, the “logical and” and “logical or” operations are idempotent with respect
to the set of Booleans.

80.7 Algebraic Structures

An algebraic structure consists of a set of values, a set of one or more operations
on those values, and properties (or “laws”) of the operation on the set. We can
characterize algebraic structures by the operations and their properties on the
set of values.

If we focus on a binary operation ⊕ on a set A, then we can define various
algebraic structures based on their properties.

• If ⊕ is closed on A, then then ⊕ and A form a magma.

• A magma in which ⊕ is an associative operation forms a semigroup.

• A semigroup in which ⊕ has an identity element forms a monoid.

• A monoid in which every element of A has an inverse forms a group.

• A monoid in which ⊕ is commutative forms a commutative monoid (or
Abelian monoid).

• A group in which ⊕ is commutative forms an Abelian group.

For example, addition on natural numbers forms a commutative monoid and on
integers forms an Abelian group.

Note: Above we describe a few common group-like algebraic structures, that is,
algebras with one operation and one set. If we consider two operations on one
set (e.g. ⊕ on ⊗), then we have various ring-like algebraic structures. By adding
other operations, we have various other kinds of algebraic structures. If we

7



consider more than one set, then we moved from a single-sorted (or first-order)
algebra to a many-sorted algebra.

80.8 Exercises

TODO: Add

80.9 Acknowledgements

I adapted and revised much of this work in Summer and Fall 2016 from Chapter
2 of my Notes on Functional Programming with Haskell [Cunningham 2014a].

In Summer and Fall 2017, I continued to develop this material as a part of
Chapter 1, Fundamentals, of my 2017 Haskell-based programming languages
textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages; Chapter 2, Programming
Paradigms; Chapter 3, Object-based Paradigms; and Chapter 91, Review of
Relevant Mathematics (this background chapter).

In Spring 2019, I expanded the discussion of algebraic structures a bit.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

80.10 References

TODO: Add any needed references

[Cunningham 2014a] H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1994-2014.

80.11 Terms and Concepts

TODO: Add

8

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	Review of Relevant Mathematics
	Chapter Introduction
	Natural Numbers and Ordering
	Functions
	Recursive Functions
	Mathematical Induction Natural Numbers
	Operations
	Algebraic Structures
	Exercises
	Acknowledgements
	References
	Terms and Concepts


