
Exploring Languages with Interpreters
and Functional Programming

Chapter 46

H. Conrad Cunningham

4 November 2018

Contents
46 Calculator: Compilation 2

46.1 Chapter Introduction . 2
46.2 Stack Virtual Machine . 2

46.2.1 Instruction set syntax . 2
46.2.2 Instruction set semantics 2
46.2.3 Machine execution . 3
46.2.4 Compilation . 4
46.2.5 Source code . 4

46.3 Exercise Set A . 4
46.4 Conditional Expressions . 5

46.4.1 Extending the Expression Language 5
46.4.2 Extending the stack virtual machine (UNFINISHED) . . 6
46.4.3 Extending the compiler (UNFINISHED) 7

46.5 Exercise Set B (UNFINISHED) 7
46.6 Acknowledgements . 7
46.7 References . 8
46.8 Terms and Concepts . 8

Copyright (C) 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of November 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

46 Calculator: Compilation

46.1 Chapter Introduction

This is a partially developed chapter.

TODO: - Complete and revise the conditional expression sections as needed (e.g.,
the compilation subsection does not discuss the handling of labels/addresses
sufficiently) - Consider adding separate compilation units and linking of units
together

46.2 Stack Virtual Machine

Consider a stack virtual machine as a means for executing the Expression
Language. The operation of this machine is similar to the operation of a
calculator that uses Reverse Polish Notation (or postfix notation) such as the
calculators from Hewlett-Packard.

46.2.1 Instruction set syntax

Consider a stack-based virtual machine with a symbolic instruction set defined
by the following abstract syntax:

data SInstr = SVal Int
| SVar String
| SPop
| SSwap
| SDup
| SAdd
| SMul

deriving (Show, Eq)

46.2.2 Instruction set semantics

Suppose the state of the virtual machine consists an evaluation stack of values
and a program counter indicating the next instruction to be executed. Further
suppose the above instructions have the following semantics. The machine
executes much like a calculator that uses “reverse Polish notation”.

• SVal i pushes value i onto the top of the evaluation stack.

• SVar v pushes the value of “variable” v from the current environment onto
the top of the evaluation stack. (Here we are simulating a memory with
the environment.)

2

https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine

• SPop removes the top element from the stack. (That is, if the stack from
the top is 10:xs, then the resulting stack is xs.)

• SSwap exchanges the top two elements on the stack. (That is, if the stack
from the top is 10:20:xs, then the resulting stack is 20:10:xs.)

• SDup pushes another copy of the top element onto the stack. (That is, if
the stack from the top is 10:xs, then the resulting stack is 10:10:xs.)

• SAdd pops the top two elements from the stack, adds the second to the
first, and pushes the result back on top of the stack. (That is, if the stack
from the top is 10:20:xs then the resulting stack is 30:xs.)

• SMul pops the top two elements from the stack, multiplies the second times
the first, and pushes the result back on top of the stack. (That is, if the
stack from the top is 10:20:xs then the resulting stack is 200:xs.)

We extend this instruction set later to provide other operations.

46.2.3 Machine execution

We can define a simple skeletal execution mechanism for the Stack Virtual
Machine as follows. Function execSInstr takes the state, environment, and
instruction and returns the modified state and environment. (This version does
not modify the environment, but a version in the future may do so.)

data SState = SState [Int] Int
deriving (Show, Eq)

execSInstr :: SState -> Env -> SInstr -> (SState, Env)
execSInstr (SState es pc) env (SVal i) =

(SState (i:es) (pc+1), env)
execSInstr (SState es pc) env (SVar v) =

case lookup v env of
Just i -> (SState (i:es) (pc+1), env)
Nothing -> error ("Variable " ++ show v ++ " undefined")

execSInstr (SState es pc) env SPop =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SSwap =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SDup =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SAdd =
case es of

(r:l:xs) -> (SState ((l+r):xs) (pc+1), env)
_ -> error ("Cannot Add. Stack too short: " ++ show es)

execSInstr (SState es pc) env SMul = (SState es pc, env) -- REPLACE

3

46.2.4 Compilation

We can translate the Expression Language abstract syntax trees to sequences
of stack virtual machine instructions. We call this process code generation and
call the whole process of converting from source code to the instruction set
compilation.

We consider compilation of the Expression Language to the stack virtual machine
in Exercise Set A.

46.2.5 Source code

• Stack Virtual Machine?

46.3 Exercise Set A

In this exercise set, we consider the Stack Virtual Machine and translation
of the Expression Language’s abstract syntax trees to equivalent sequences of
instructions.

1. Complete the development of the function execSInstr, adding the code
for the SPop, SSwap, SDup, and SMul instructions.

2. Extend the Stack Virtual Machine instruction set (i.e., SInstr) to support
the extensions to the Expr data type defined in Exercise Set A (i.e., Sub,
Div, Neg, Min, and Max). The operators take top value as their right
operands and the value under that as the left operand.

3. Develop a Haskell function

execSeq :: SState -> Env -> [SInstr] -> (SState, Env)

that executes a sequence of Stack Virtual Machine instructions given the
initial state and environment. (Although the machine in this case study
so far does not modify the environment, allow for the future possibility
of modification. A later exerces may extend the Expression Language to
add assignment statements, imperative loops, and variable and function
declarations.)

Also develop a function exec that executes a sequence of instructions from
an initially empty stack with the given environment and returns the result
on top of the stack after execution. (You may use execSeq.)

exec :: Env -> [SInstr] -> Int

4. Develop a Haskell function

compile :: Expr -> [SInstr]

4

SInstr01.hs

that translates the extended expression tree from Exercise Set A to a
sequence of Stack Virtual Machine instructions as extended in this exercise
set.

5. Develop a Haskell function compGo that takes an expression tree, simplifies,
compiles, and executes it using the given environment. You may use the
functions exec and compile from the previous exercises.

compGo :: Env -> Expr -> Int

46.4 Conditional Expressions

Let’s examine how to extend the ELI Calculator language to include comparisons
and conditional expressions.

46.4.1 Extending the Expression Language

TODO: This was introduced as a operator in a previous chapter.

Suppose that we redefine Expr to include binary operators Eq (equality) and Lt
(less-than comparison), logical unary operator Not, and the ternary conditional
expression If (if-then-else).

data Expr = ...
| Eq Expr Expr
| Lt Expr Expr
| Not Expr
| If Expr Expr Expr
...

deriving Show

This extended language does not have Boolean values. We represent “false” by
integer 0 and “true” by a nonzero integer, primarily by 1.

We express the semantics of the various Expression Language expressions as
follows:

• Eq l r evaluates to the value 1 if l and r have the same value and to 0
otherwise.

• Lt l r evaluates to the value 1 if the value of l is smaller then the value
of r and to 0 otherwise.

• Not i evaluates to 1 if i is zero and evaluates to 0 if i is nonzero.

• If c l r first evaluates c; if c is nonzero, the if evaluates to the value of
l; otherwise the if evaluates to the value of r.

5

46.4.2 Extending the stack virtual machine (UNFINISHED)

TODO: This discussion in the remainder of the Conditional Expression section is
not complete! In particular, the discussion of labels/addresses must be clarified
and expanded—probably changed.

Suppose we redefine SInstr, the Stack Virtual Machine to include the new
instructions:

data SInstr = ...
| SEq
| SLt
| SLnot
| SLabel String
| SGo String
| SIfZ String
| SIfNZ String
deriving (Show, Eq)

These Stack Virtual Machine instructions execute as follows:

• SEq pops the top two values from the stack; if the values are equal, it
pushes a 1 onto the stack; otherwise, it pushes a 0. (For example, if the
stack from the top is 3:4:xs, the resulting stack is 0:xs.)

• SLt pops the top two values from the stack; if the second value is smaller
than the top value, it pushes a 1 onto the stack; otherwise, it pushes a 0.
(For example, if the stack from the top is 3:4:xs, the resulting stack is
0:xs.)

• SLnot pops the top value from the stack; if the top is 0, it pushes 1 back
onto the stack; if it is nonzero, it pushed 0 back onto the stack. (For
example, if the stack from the top is 0:xs, the resulting stack is 1:xs. If
the stack is 7:xs, then the result is 0:xs.)

• SLabel n does not change the stack. It is a pseudo-instruction to enable a
jump to this point in the program using label n.

• SGo n makes the next instruction to be executed the one labelled n; it does
not change the stack.

• SIfZ n pops the value from the top of the stack; if this value is zero, then
the next instruction executed will be the one labelled n; otherwise the next
instruction is the one following the SIfZ instruction.

• SIfNZ n pops the value from the top of the stack; if this value is nonzero,
then it makes the next instruction executed the one labelled n; otherwise
the next instruction is the one following the SIfNZ instruction.

6

46.4.3 Extending the compiler (UNFINISHED)

We can translate the expression

If (Eq (Var "x") (Val 1)) (Val 10) (Val 20)

to a sequence of Stack Virtual Machine instructions such as:

[SVar "x", SVal 1, SEq, SIfZ "else", SVal 10, SGo "end",
SLabel "else', SVal 20, SLabel "end"]

Of course, each If needs a unique set of labels.

46.5 Exercise Set B (UNFINISHED)

1. Extend the eval function to support the Eq, Lt, Not, and If operators.

2. Extend the simplify function to support the Eq, Lt, Not, and If operators.

3. Extend the data type Expr and the eval function to support the other
comparison operators Ne (not equal), Le (less or equal), Gt (greater than),
and Ge (greater or equal) and the logical operators And and Or.

4. Extend the simplify function to support the comparison operators Ne,
Le, Gt, and Ge and the logical operators And and Or added in the previous
exercise.

5. (UNFINISHED) Extend the execSInstr, execSeq, and exec functions
from Exercise Set C to include the new Stack Virtual Machine instructions.

6. (UNFINISHED) Extend the compile and compileGo functions from Ex-
ercise Set C to include support for Eq, Lt, and Not.

7. (UNFINISHED) Extend the compile and compileGo functions from the
previous exercise to include expressions Ne, Le, Gt, Ge, And, Or, and If.
Each of these may need to be translated to a sequence of Stack Virtual
Machine instructions.

46.6 Acknowledgements

I initially developed the ELI Calculator language (then called the Expression
Language) case study for the Haskell-based offering of CSci 556, Multiparadigm
Programming, in Spring 2017. I based the work in this partial chapter, in part,
on ideas from:

• Sections 1.3, 2.5, and 2.7 and Chapter 8 of Peter Sestoff’s Programming
Language Concepts, Springer, 2012.

• Chapters 6 (Purely Functional State) from Paul Chiusano and Runar
Bjarnason’s Functional Programming in Scala, Manning, 2015.

7

I made this work a chapter of the 2017 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. It remains
a separate chapter in the 2018 version of the textbook.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed, The HTML version of this document
may require use of a browser that supports the display of MathML.

46.7 References

TODO: Edit this

[Abelson 1996]: Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs (SICP), Second Edition, MIT Press,
1996.

[Appel 1998]: Andrew W. Appel. Modern Compiler Implementation in ML,
Cambridge, 1998. (Especially section 3.2 “Predictive Parsing”)

[Chiusano 2015]: Paul Chiusano and Runar Bjarnason, Functional Program-
ming in Scala, Manning, 2015. (Especially chapters 6 “Purely Functional
State” and 9 “Parser Combinators”)

[Fowler 2011]: Martin Fowler and Rebecca Parsons. Domain-Specific Lan-
guages, Addison Wesley, 2011. (Especially chapter 21 “Recursive Descent
Parser”)

[Kamin 1990]: Samuel N. Kamin. Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, 1990.

[Linz 2017]: Peter Linz. An Introduction to Formal Languages and Automata,
Fifth Edition, Jones and Bartlett, 2017. (Especially sections 1.2, 3.3, and
5.1)

[Schinz-Haller 2017]: Michel Schinz and Philipp Haller. A Scala Tutorial for
Java Programmers, accessed February 2016.

[Sestoft 2012]: Peter Sestoft. Programming Language Concepts, Springer, 2012.
(Especially sections 1.3, 2.5, and 2.7 and chapter 8)

[Wikipedia 2017]: Wikipedia articles “Regular Grammar”, “Context-Free
Grammar”, “Backus-Naur Form”, “Lexical Analysis”, “Parsing”, “LL
Parser”, “Recursive Descent Parser”, and “Abstract Syntax”.

46.8 Terms and Concepts

TODO

8

http://mitpress.mit.edu/sicp/
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

	Calculator: Compilation
	Chapter Introduction
	Stack Virtual Machine
	Instruction set syntax
	Instruction set semantics
	Machine execution
	Compilation
	Source code

	Exercise Set A
	Conditional Expressions
	Extending the Expression Language
	Extending the stack virtual machine (UNFINISHED)
	Extending the compiler (UNFINISHED)

	Exercise Set B (UNFINISHED)
	Acknowledgements
	References
	Terms and Concepts

