
Exploring Languages with Interpreters
and Functional Programming

Chapter 45

H. Conrad Cunningham

4 November 2018

Contents
45 Parsing Combinators 2

45.1 Chapter Introduction . 2
45.2 Developint Parsing Combinators 2

45.2.1 State actions and combinators 2
45.2.2 Completing a combinator library 3
45.2.3 Adding parse tree generations (TODO) 5

45.3 Standard libraries for parsing (TODO) 5
45.4 Exercises . 5
45.5 Acknowledgements . 6
45.6 References . 7
45.7 Terms and Concepts . 7

Copyright (C) 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of November 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

45 Parsing Combinators

45.1 Chapter Introduction

TODO

45.2 Developint Parsing Combinators

In Chapter 44, we examined a set of prototype parsing functions and then used
them as patterns for hand-coding of recursive descent parsing functions. We can
benefit by generalizing these functions and collecting them into a library.

45.2.1 State actions and combinators

Consider parseS, one of the prototype parsing functions from a previous section.
It parses the grammar rule S ::= A | B, which has two alternatives.

parseS :: String -> (Bool,String)
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _) ->

case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A,B fail

Note that parseS and the other prototype parsing functions have the type:

String -> (Bool,String)

The occurrence of type String in the argument of the function represents the
state of the input before evaluation of the function; the second occurrence of
String represents the state after evaluation. The type Bool represents the result
of the evaluation.

In an imperative program, the state is often left implicit and only the result
type is returned. However, in a purely functional program, we must also make
both the state change explicit.

Functions that have a type similar to parseS are called state actions or state
transitions. We can generalize this parsing state transition as a function type:

type Parser a b = a -> (b,a)

In the case of parseS, we specialize this to:

Parser String Bool

2

In the case of richer parsing case studies for the prefix and infix parsers, we
specialize this type as:

Parser [Token] (Either ErrMsg Expr)

Given the Parser type, we can define a set of combinators that allow us to
combine simpler parsers to construct more complex parsers. These combinators
can pass along the state implicitly, avoiding some tedious and repetitive work.

We can define a combinator parseAlt that generalizes the parseS prototype
function above. It implements a recognizer, so we fix type b to Bool, but leave
type argument a general.

parseAlt :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseAlt p1 p2 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _) ->

case p2 xs of
(True, ys) -> (True, ys)
(False, _) -> (False, xs)

Note the use of the anonymous function in the body. Function parseAlt takes
two Parser values and then returns a Parser value. The Parser function
returned binds in the two component function values. When this function is
applied to the parser input (which is the argument of the anonymous function),
it applies the two component parsers as needed.

We can easily redefine parseS in terms of the parseAlt combinator and simpler
parsers parseA and parseB.

parseS = parseAlt parseA parseB

Given parsing input inp, we can invoke the parser with the expression:

parseS inp

Note that this formulation enables us to handle the passing of state among the
component parsers implicitly, much as we can in an imperative computation.
But it still preserves the nature of purely functional computation.

45.2.2 Completing a combinator library

Now consider the parseA prototype, which implements a two-component se-
quencing rule A ::= C D.

parseA xs =
case parseC xs of -- try C

(True, ys) -> -- then try D

3

case parseD ys of
(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- both C, D fail

(False, _) -> (False,xs) -- C fails

As with parseS, we can generalize parseA as a combinator parseSeq.

parseSeq :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseSeq p1 p2 =

\xs ->
case p1 xs of

(True, ys) ->
case p2 ys of

t@(True, zs) -> t
(False, _) -> (False, xs)

(False, _) -> (False, xs)

Thus we can redefine parseA in terms of the parseSeq combinator and simpler
parsers parseC and parseD.

parseA = parseSeq parseC parseD

Similarly, we consider the parseB prototype, which implements a repetition rule
B ::= { E }.

parseB xs =
case parseE xs of -- try E

(True, ys) -> parseB ys -- try again
(False, ys) -> (True,xs) -- stop

As above, we generalize this as combinator parseStar.

parseStar :: Parser a Bool -> Parser a Bool
parseStar p1 =

\xs ->
case p1 xs of

(True, ys) -> parseStar p1 ys
(False, _) -> (True, xs)

We can redefine parseB in terms of combinator parseStar and simpler parser
parseE.

parseB = parseStar parseB

Finally, consider parsing prototype parseC, which implements an optional rule
C ::= [F].

parseC xs =
case parseF xs of -- try F

(True, ys) -> (True,ys)
(False, _) -> (True,xs)

4

We generalize this pattern as parseOpt, as follows.

parseOpt :: Parser a Bool -> Parser a Bool
parseOpt p1 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _) -> (True, xs)

We can thus redefine parseC in terms of simpler parser parseF and combinator
parseOpt.

parseC = parseOpt parseF

In this simple example grammar, function parseD is a simple instance of a
sequence and parseE and parseF are simple parsers for symbols. These can be
directly implemented as basic parsers, as before. However, the technique work if
these are more complex parsers built up from combinators.

For convenience and completeness, we include extended alternative and sequenc-
ing combinators and parsers that always fail or always succeed.

parseAltList :: [Parser a Bool] -> Parser a Bool
parseSeqList :: [Parser a Bool] -> Parser a Bool
parseFail, parseSucceed :: Parser a Bool

The combinators in this library are in the Haskell module ParserComb.hs. A
module that does some testing is TestParserComb.hs.

TODO: Update and document the Parser Combinator library code.

45.2.3 Adding parse tree generations (TODO)

TODO: Expand this library to allow returns of “parse trees” and error messages.

45.3 Standard libraries for parsing (TODO)

There are a number of relatively standard parsing combinator libraries–e.g. the
library Parsec. Readers who wish to develop other parsers may want to study
that library.

45.4 Exercises

TODO

5

ParserComb.hs
TestParserComb.hs

45.5 Acknowledgements

I initially developed this prototype set of parsing combinators in Summer 2017
as a part of what is now called the ELI Calculator language case study. I based
this case study, in part, on ideas from:

• the Scala-based Expression Tree Calculator case study from my Notes on
Scala for Java Programmers [Cunningham 2018]: (which was itself adapted
from the tutorial Scala for Java Programmers [Schinz 2017] in Spring 2016)

• the Lua-based Expression Language 1 and Imperative Core interpreters I
developed for the Fall 2016 CSci 450 course

• Samuel N. Kamin’s textbook Programming Languages: An Interpreter-
based Approach, Addison Wesley, 1990 [Kamin 1990] and my work to
implement three (Core, Lisp, and Scheme) of these interpeters in Lua in
2013

• the Wikipedia articles on Regular Grammar, Context-Free Grammar,
Backus-Naur Form, Lexical Analysis, Parsing, LL Parser, Recursive Descent
Parser, and Abstract Syntax [Wikipedia 2018, 2018b].

• Chapter 21 (Recursive Descent Parser) of the Martin Fowler and Rebecca
Parsons’s book Domain-Specific Languages, Addison Wesley, 2011 [Fowler
2011].

• Section 3.2 (Predictive Parsing) of Andrew W. Appel’s textbook Modern
Compiler Implementation in ML, Cambridge, 1998
[Appel 1998].

• Chapters 6 (Purely Functional State) and 9 (Parser Combinators) from
Paul Chiusano and Runar Bjarnason’s Functional Programming in Scala,
Manning, 2015.

The parsing combinators were built primarily on the approach of [Fowler 2011],
with influences by [Chiusano 2015].

In Fall 2018, I divided the 2017 Expression Language Parsing chapter into two
chapters in the 2018 version of the textbook, now titled Exploring Languages with
Interpreters and Functional Programming. Sections 11.1-11.4 became Chapter
44, Calculator Parsing, and sections 11.6-11.7 became Chapter 45, Parsing
Combinators (this chapter). I merged Section 11.5 into Chapter 43, a new
chapter on the modular structure of the ELI Calculator language interpreter.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed. The HTML version of this document
may require use of a browser that supports the display of MathML.

6

../../notes/ScalaForJava.html
../../notes/ScalaForJava.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

45.6 References

[Appel 1998]: Andrew W. Appel. Modern Compiler Implementation in ML,
Cambridge, 1998. (Especially section 3.2 “Predictive Parsing”)

[Chiusano 2015]: Paul Chiusano and Runar Bjarnason, Functional Program-
ming in Scala, Manning, 2015. (Especially chapters 6 “Purely Functional
State” and 9 “Parser Combinators”)

[Cunningham 2018]: H. Conrad Cunningham. Notes on Scala for Java Pro-
grammers, 2018 (which is itself adapted from the tutorial [Schinz 2018]
Scala for Java Programmers

[Fowler 2011]: Martin Fowler and Rebecca Parsons. Domain-Specific Lan-
guages, Addison Wesley, 2011. (Especially chapter 21 “Recursive Descent
Parser”)

[Kamin 1990] Samuel N. Kamin. Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, 1990.

[Linz 2017] Peter Linz. An Introduction to Formal Languages and Automata,
Fifth Edition, Jones and Bartlett, 2017. (Especially sections 1.2, 3.3, and
5.1)

[Schinz 2017]: Michel Schinz and Philipp Haller. A Scala Tutorial for Java
Programmers, accessed February 2016.

[Sestoft 2012]: Peter Sestoft. Programming Language Concepts, Springer, 2012.
(Especially sections 1.3, 2.5, and 2.7 and chapter 8)

[Wikipedia 2018a]: Wikipedia. Articles on Formal Grammar, Regular Gram-
mar, Context-Free Grammar, Backus-Naur Form, Extended Backus-Naur
Form, and Parsing. Accessed 9 August 2018.

[Wikipedia 2018b]: Wikipedia. Articles on Abstract Syntax and Associative
Array, Accessed 9 August 2018.

45.7 Terms and Concepts

TODO

7

https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/ScalaForJava/ScalaForJava.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array

	Parsing Combinators
	Chapter Introduction
	Developint Parsing Combinators
	State actions and combinators
	Completing a combinator library
	Adding parse tree generations (TODO)

	Standard libraries for parsing (TODO)
	Exercises
	Acknowledgements
	References
	Terms and Concepts

