
Exploring Languages with Interpreters
and Functional Programming

Chapter 30

H. Conrad Cunningham

4 August 2018

Contents
30 Infinite Data Structures 2

30.1 Chapter Introduction . 2
30.2 Infinite Lists . 2
30.3 Iterate . 3
30.4 Prime Numbers: Sieve of Eratosthenes 4
30.5 Circular Structures . 6
30.6 What Next? . 7
30.7 Exercises . 7
30.8 Acknowledgements . 7
30.9 References . 7
30.10Terms and Concepts . 8

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of August 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

30 Infinite Data Structures

30.1 Chapter Introduction

One particular benefit of lazy evaluation is that functions in Haskell can manipu-
late “infinite” data structures. Of course, a program cannot actually generate or
store all of an infinite object, but lazy evaluation will allow the object to be built
piece-by-piece as needed and the storage occupied by no-longer-needed pieces to
be reclaimed.

This chapter explores Haskell programming techniques for infinite data structures
such as lists.

TODO: - Complete chapter. - Separate out code, make sure works for Haskell
2010.

30.2 Infinite Lists

In Chapter 18, we looked at generators for infinite arithmetic sequences such
as [1..] and [1,3..]. These infinite lists are encoded in the functions that
generate the sequences. The sequences are only evaluated as far as needed.

For example, take 5 [1..] yields:

[1,2,3,4,5]

Haskell also allows infinite lists of infinite lists to be expressed as shown in
the following example which generates a table of the multiples of the positive
integers.

multiples :: [[Int]]
multiples = [[m*n | m<-[1..]] | n <- [1..]]

Thus multiples represents an infinite list, as shown below (not valid Haskell
code):

[[1, 2, 3, 4, 5, ...],
[2, 4, 6, 8,10, ...],
[3, 6, 9,12,14, ...],
[4, 8,12,16,20, ...],
...

]

However, if we evaluate the expression

take 4 (multiples !! 3)

we get the terminating result:

[4,8,12,16]

2

Note: Remember that the operator xs !! n returns element n of the list xs
(where the head is element 0).

Haskell’s infinite lists are not the same as infinite sets or infinite sequences
in mathematics. Infinite lists in Haskell correspond to infinite computations
whereas infinite sets in mathematics are simply definitions.

In mathematics, set {x2 | x ∈ {1, 2, 3} ∧ x2 < 10} = {1, 4, 9}.

However, in Haskell, the expression

show [x * x | x <- [1..], x * x < 10]

yields:

[1,4,9

This is a computation that never returns a result. Often, we assign this computa-
tion the value 1:4:9:⊥ (where ⊥, pronounced “bottom” represents an undefined
expression).

But the expression

takeWhile (<10) [x * x | x <- [1..]]

yields:

[1,4,9]

Reference: This section is based, in part, on section 7.1 of the Bird and Wadler
textbook [Bird 1988] and parts of Wentworth’s tutorial [Wentworth 1990].

30.3 Iterate

In mathematics, the notation fn denotes the function f composed with itself n
times. Thus, f0 = id, f1 = f , f2 = f.f , f3 = f.f.f , · · ·.

A useful function is the function iterate such that (not valid Haskell code):

iterate f x = [x, f x, f^2 x, f^3 x, ... x]

The Haskell standard Prelude defines iterate recursively as follows:

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

For example, suppose we need the set of all powers of the integers.

We can define a function powertables would expand as follows (not valid Haskell
code):

[[1, 2, 4, 8, ...
[1, 3, 9, 27, ...
[1, 4,16, 64, ...

3

[1, 5,25,125, ...
...

]

Using iterate we can define powertables compactly as follows:

powertables :: [[Int]]
powertables = [iterate (*n) 1 | n <- [2..]]

As another example, suppose we want a function to extract the decimal digits of
a positive integer. We can define digits as follows:

digits :: Int -> [Int]
digits = reverse . map (`mod` 10) . takeWhile (/= 0) . iterate (/10)

Let’s consider how digits 178 evaluates (not actual reduction steps).

digits 178
−→ reverse . map (mod10) . takeWhile (/= 0) [178,17,1,0,0, ...]
−→ reverse . map (mod10) [178,17,1]
−→ reverse [8,7,1]
−→ [1,7,8]

Reference: This section is based in part on section 7.2 of the Bird and Wadler
textbook [Bird 1988].

30.4 Prime Numbers: Sieve of Eratosthenes

The Greek mathematician Eratosthenes described essentially the following pro-
cedure for generating the list of all prime numbers. This algorithm is called the
Sieve of Eratosthenes.

1. Generate the list 2, 3, 4, · · ·

2. Mark the first element p as prime.

3. Delete all multiples of p from the list.

4. Return to step 2.

Not only is the 2-3-4 loop infinite, but so are steps 1 and 3 themselves.

There is a straightforward translation of this algorithm to Haskell.

primes :: [Int]
primes = map head (iterate sieve [2..])

sieve (p:xs) = [x | x <- xs, x `mod` p /= 0]

4

Note: This uses an intermediate infinite list of infinite lists; even though it is
evaluated lazily, it is still inefficient.

We can use function primes in various ways, e.g. to find the first 1000 primes or
to find all the primes that are less than 10,000.

take 1000 primes
takeWhile (<10000) primes

Calculations such as these are not trivial if the computation is attempted using
arrays in an “eager” language like Pascal—in particular it is difficult to know
beforehand how large an array to declare for the lists.

However, by separating the concerns, that is, by keeping the computation of the
primes separate from the application of the boundary conditions, the program
becomes quite modular. The same basic computation can support different
boundary conditions in different contexts.

Now let’s transform the primes and sieve definitions to eliminate the infinite
list of infinite lists. First, let’s separate the generation of the infinite list of
positive integers from the application of sieve.

primes = rsieve [2..]

rsieve (p:ps) = map head (iterate sieve (p:ps))

Next, let’s try to transform rsieve into a more efficient definition.

rsieve (p:ps)

= { rsieve }

map head (iterate sieve (p:ps))

= { iterate }

map head ((p:ps) : (iterate sieve (sieve (p:ps))))

= { map.2, head }

p : map head (iterate sieve (sieve (p:ps)))

= { sieve }

p : map head (iterate sieve [x | x <- ps, x `mod` p /= 0])

= { rsieve }

p : rsieve [x | x <- ps, x `mod` p /= 0]

This calculation gives us the new definition:

rsieve (p:ps) = p : rsieve [x | x <- ps, x `mod` p /= 0]

This new definition is, of course, equivalent to the original one, but it is slightly
more efficient in that it does not use an infinite list of infinite lists.

5

Reference: This is based in part on section 7.3 of the Bird and Wadler textbook
[Bird 1988] and Chapter 9 of Wentworth’s tutorial [Wentworth 1990].

30.5 Circular Structures

Suppose a program produces a data structure (e.g. a list) as its output. And
further suppose the program feeds that output structure back into the input so
that later elements in the structure depend on earlier elements. These might be
called circular, cyclic, or self-referential structures.

Consider a list consisting of the integer one repeated infinitely:

ones = 1:ones

As an expression graph, ones consists of a cons operator with two children, the
integer 1 on the left and a recursive reference to ones (i.e. a self loop) on the
right. Thus the infinite list ones is represented in a finite amount of space.

Function numsFrom below is a perhaps more useful function. It generates a list
of successive integers beginning with n:

numsFrom :: Int -> [Int]
numsFrom n = n : numsFrom (n+1)

Using numsFrom we can construct an infinite list of the natural number multiples
of an integer m:

multiples :: Int -> [Int]
multiples m = map ((*) m) (numsFrom 0)

Of course, we cannot actually process all the members of one of these infinite
lists. If we want a terminating program, we can only process some finite initial
segment of the list. For example, we might want all of the multiples of 3 that
are at most 2000:

takeWhile ((>=) 2000) (multiples 3)

We can also define a program to generate a list of the Fibonacci numbers in a
circular fashion similar to ones:

fibs :: [Int]
fibs = 0 : 1 : (zipWith (+) fibs (tail fibs))

Proofs involving infinite lists are beyond the current scope of this textbook. See
the Bird and Wadler textbook for more information [Bird 1988]/.

Reference: This is based, in part, on section 7.6 of the Bird and Wadler textbook
[Bird 1988] and Chaptrer 9 of Wentworth’s tutorial [Wentworth 1990].

TODO: Finish Chapter

6

30.6 What Next?

TODO

30.7 Exercises

TODO

30.8 Acknowledgements

In Summer 2018, I adapted and revised this chapter from:

• chapter 15 of my Notes on Functional Programming with Haskell [Cun-
ningham 2014]

These previous notes drew on the presentations in the 1st edition of the Bird
and Wadler textbook [Bird 1988], Wentworth’s tutorial [Wentworth 1990], and
other sources.

I incorporated this work as new Chapter 30, Infinite Data Structures, in the 2018
version of the textbook Exploring Languages with Interpreters and Functional
Programming and continue to revise it.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

30.9 References

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Bird 1998]: Richard Bird. Introduction to Functional Programming using
Haskell, Second Edition, Prentice Hall, 1998.

[Bird 2015]: Richard Bird. Thinking Functionally with Haskell, Second Edition,
Cambridge University Press, 2015.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Wentworth 1990]: E. P. Wentworth. Introduction to Functional Program-
ming using RUFL, Department of Computer Science, Rhodes University,
Grahamstown, South Africa, August 1990.

7

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

30.10 Terms and Concepts

Infinite data structures, lazy evaluation, infinite sets, infinite sequences, infi-
nite lists, infinite computations, bottom ⊥, iterate, prime numbers, Sieve of
Eratosthenes, separation of concerns, circular/cyclic/self-referential structures.

8

	Infinite Data Structures
	Chapter Introduction
	Infinite Lists
	Iterate
	Prime Numbers: Sieve of Eratosthenes
	Circular Structures
	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

