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29 Divide and Conquer Algorithms

29.1 Chapter Introduction

This Chapter consists of a translation of partial chapter 14 of [Cunningham
2014]. It is incomplete.

TODO: Intro

Reference: This chapter is based on section 6.4 of the Bird and Wadler textbook
[Bird 1988] and section 4.2 of Kelly’s dissertation [Kelly 1989].

29.2 Overview

The general strategy strategy for divide-and-conquer algorithms is as follows:

1. Decompose problem P into subproblems, each like P but with a smaller
input argument.

2. Solve each subproblem, either directly or by recursively applying the
strategy.

3. Assemble the solution to P by combining the solutions to its subproblems.

The advantages of divide-and-conquer algorithms are that they:

• can lead to efficient solutions.

• allow use of a “horizontal” parallelism. Similar problems can be

Section 6.4 of the Bird and Wadler textbook [Bird 1988] discusses several
important divide and conquer algorithms: mergesort, quicksort, multiplication,
and binary search.

In these algorithms the divide and conquer technique leads to more efficient
algorithms.

For example, a simple sequential search is O(n) (where n denotes the length of
the input). Application of the divide-and-conquer strategy leads to the binary
search which is a more efficient, a O(log2(n)) search.

As a general pattern of computation, the divide and conquer strategy can be
stated with the following higher order function:

divideAndConquer :: (a -> Bool) -- trivial
-> (a -> b) -- simplySolve
-> (a -> [a]) -- decompose
-> (a -> [b] -> b) -- combineSolutions
-> a -- problem
-> b
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divideAndConquer trivial simplySolve decompose
combineSolutions problem

= solve problem
where solve p

| trivial p = simplySolve p
| otherwise = combineSolutions p

(map solve (decompose p))

If the problem is trivially simple (i.e. trivial p), then it is solved directly using
simplySolve.

If the problem is not trivially simple, then it is decomposed into a list of
subproblems using decompose and each subproblem is solved separately using
map solve. The list of solutions to the subproblems are then assembled into a
solution for the problem using combineSolutions.

Sometimes combineSolutions may require the original problem description in
order to put the solutions back together properly. Hence the parameter p.

Note that the solution of each subproblem is completely independent from the
solution of all the others.

If all the subproblem solutions are needed by combineSolutions, then the
language implementation could potentially solve the subproblems simultaneously.
The implementation could take advantage of the availability of multiple processors
and actually evaluate the expressions in parallel. This is “horizontal” parallelism
as described above.

If combineSolutions does not require all the subproblem solutions, then the
subproblems cannot be safely solved in parallel. If they were, the result of
combineSolutions might be nondeterministic, that is, the result could be
dependent upon the relative order in which the subproblem results are completed.

29.3 Divide and Conquer Fibonacci

Now let’s use the function divideAndConquer to define a few functions.

First, let’s define a Fibonacci function. (This is adapted from the function
defined on pages 77-8 of Kelly [Kelly 1989]. This function is inefficient. It is
given here to illustrate the technique.)

fib :: Int -> Int
fib n = divideAndConquer trivial simplySolve decompose

combineSolutions problem
where trivial 0 = True

trivial 1 = True
trivial (m+2) = False
simplySolve 0 = 0
simplySolve 1 = 1
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decompose m = [m-1,m-2]
combineSolutions _ [x,y] = x + y

29.4 Divide and Conquer Folding

Next, let’s consider a folding function (similar to foldr and foldl) that uses
the function divideAndConquer. (This is adapted from the function defined on
pages 79-80 of Kelly [Kelly 1989].)

fold :: (a -> a -> a) -> a -> [a] -> a
fold op i =

divideAndConquer trivial simplySolve decompose
combineSolutions

where trivial xs = length xs <= 1
simplySolve [] = i
simplySolve [x] = x
decompose xs = [take m xs, drop m xs]

where m = length xs / 2
combineSolutions _ [x,y] = op x y

This function divides the input list into two almost equal parts, folds each part
separately, and then applies the operation to the two partial results to get the
combined result.

The fold function depends upon the operation op being associative. That is,
the result must not be affected by the order in which the operation is applied to
adjacent elements of the input list.

In foldr and foldl, the operations are not required to be associative. Thus
the result might depend upon the right-to-left operation order in foldr or
left-to-right order in foldl.

Function fold is thus a bit less general. However, since the operation is associa-
tive and combineSolutions is strict in all elements of its second argument, the
operations on pairs of elements from the list can be safely done in parallel,

Another divide-and-conquer definition of a folding function follows. Function
fold' is an optimized version of fold.

fold' :: (a -> a -> a) -> a -> [a] -> a
fold' op i xs = foldt (length xs) xs

where foldt _ [] = i
foldt _ [x] = x
foldt n ys = op (foldt m (take m ys))

(foldt m' (drop m ys))
where m = n / 2

m' = n - m
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29.5 Minimum and Maximum of a List

Consider the problem of finding both the minimum and the maximum values in
a nonempty list and returning them as a pair.

First let’s look at a definition that uses the left-folding operator.

sMinMax :: Ord a => [a] -> (a,a)
sMinMax (x:xs) = foldl' newmm (x,x) xs

where newmm (y,z) u = (min y u, max z u)

Let’s assume that the comparisons of the elements are expensive and base our
time measure on the number of comparisons. Let n denote the length of the list
argument and time be a time function

A singleton list requires no comparisons. Each additional element adds two
comparisons (one min and one max).

time n | n == 1 = 0
| n >= 2 = time (n-1) + 2

Thus time n == 2 * n - 2.

Now let’s look at a divide and conquer solution.

minMax :: Ord a => [a] -> (a,a)
minMax [x] = (x,x)
minMax [x,y] = if x < y then (x,y) else (y,x)
minMax xs = (min a c, max b d)

where m = length xs / 2
(a,b) = minMax (take m xs)
(c,d) = minMax (drop m xs)

Again let’s count the number of comparisons for a list of length n.

time n | n == 1 = 0
| n == 2 = 1
| n > 2 = time (floor (n/2)) + time (ceiling (n/2)) + 2

For convenience suppose n = 2^k for some k >= 1.

time n = 2 * time (n/2) + 2
= 2 * (2 * time (n/4) + 2) + 2
= 4 * time (n/4) + 4 + 2
= ...
= 2^(k-1) * time 2 + sum [ 2^i | i <- [1..(k-1)] ]
= 2^(k-1) + 2 * sum [ 2^i | i <- [1..(k-1)] ]

- sum [ 2^i | i <- [1..(k-1)] ]
= 2^(k-1) + 2^k - 2
= 3 * 2^(k-1) - 2
= 3 * (n/2) - 2
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Thus the divide and conquer version takes 25 percent fewer comparisons than
the left-folding version.

So, if element comparisons are the expensive in relation to to the take, drop, and
length list operations, then the divide and conquer version is better. However,
if that is not the case, then the left-folding version is probably better.

Of course, we can also express minMax in terms of the function divideAndConquer.

minMax' :: Ord a =$> [a] -> (a,a)
minMax' = divideAndConquer trivial simplySolve decompose

combineSolutions
where n = length xs

m = n/2
trivial xs = n <= 2
simplySolve [x] = (x,x)
simplySolve [x,y] =

if x < y then (x,y) else (y,x)
decompose xs =

[take m xs, drop m xs]
combineSolutions _ [(a,b),(c,d)] =

(min a c, max b d)

29.6 What Next?

TODO

29.7 Exercises

TODO

29.8 Acknowledgements

In Summer 2018, I adapted and revised this chapter from:

• chapter 14 of my Notes on Functional Programming with Haskell [Cun-
ningham 2014]

These previous notes drew on the presentations in the 1st edition of the Bird
and Wadler textbook [Bird 1988], Kelly’s dissertation [Kelly 1989], and other
sources.

I incorporated this work as new Chapter 29, Divide and Conquer Algorithms,
in the 2018 version of the textbook Exploring Languages with Interpreters and
Functional Programming and continue to revise it.
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I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.
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29.10 Terms and Concepts

Divide and conquer, horizontal parallelism, divide and conquer as higher-order
function, sequential search binary search, simply solve, decompose, combine
solutions, Fibonacci sequence, nondeterministic, associative.
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