
Exploring Languages with Interpreters
and Functional Programming

Chapter 20

H. Conrad Cunningham

6 August 2018

Contents
20 Problem Solving 2

20.1 Chapter Introduction . 2
20.2 Problem Solving Philosophy . 2
20.3 Polya’s Insights . 2
20.4 Problem-Solving Strategies . 3

20.4.1 Solve a more general problem first 3
20.4.2 Solve a simpler problem first 4

20.4.2.1 Reuse off-the-shelf solutions to standard subprob-
lems . 5

20.4.3 Solve a related problem 6
20.4.4 Separate concerns . 6
20.4.5 Divide and conquer . 7

20.5 What Next? . 7
20.6 Exercises . 7
20.7 Acknowledgements . 7
20.8 References . 8
20.9 Terms and Concepts . 8

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of August 2018 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

20 Problem Solving

20.1 Chapter Introduction

This Chapter is incomplete.

• Add intro.
• Give better or more detailed examples.
• Add What Next? and Exercises

20.2 Problem Solving Philosophy

I approach computing science with the following philosophy:

• Programming is the essence of computing science.

• Problem solving is the essence of programming.

Here I consider programming as the process of analyzing a problem and for-
mulating a solution suitable for execution on a computer. The solution should
be correct, elegant, efficient, and robust. It should be expressed in a manner
that is understandable, maintainable, and reusable. The solution should balance
generality and specificity, abstraction and concreteness.

In my view, programming is far more than just coding. It subsumes the concerns
of algorithms, data structures, and software engineering. It uses programming
languages and software development tools. It uses the intellectual tools of
mathematics, logic, linguistics, and computing science theory. Etc.

20.3 Polya’s Insights

The mathematician George Polya (1887–1985), a Professor of Mathematics at
Stanford University, said the following in the preface to his book Mathematical
Discovery: On Understanding, Learning and Teaching Problem Solving [Polya
1981].

Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately at-
tainable. Solving problems is the specific achievement of intelligence,
and intelligence is the specific gift of mankind: solving problems can
be regarded as the most characteristically human activity. . . .

Solving problems is a practical art, like swimming, or skiing, or
playing the piano: you learn it only by imitation and practice. . . . if
you wish to learn swimming you have to go into the water, and if
you wish to become a problem solver you have to solve problems.

2

If you wish to derive the most profit from your effort, look out for
such features of a problem at hand as may be useful in handling the
problems to come. A solution that you have obtained by your own
effort or one that you have read or heard, but have followed with
real interest and insight, may become a pattern for you, a model that
you can imitate with advantage in solving similar problems. . . .

Our knowledge about any subject consists of information and know-
how. If you have genuine bonafide experience of mathematical work
on any level, elementary or advanced, there will be no doubt in your
mind that, in mathematics, know-how is much more important than
mere possession of information. . . .

What is know-how in mathematics? The ability to solve problems—
not merely routine problems but problems requiring some degree of
independence, judgment, originality, creativity. Therefore, the first
and foremost duty . . . in teaching mathematics is to emphasize
methodical work in problem solving.

What Polya says for mathematics holds just as much for computing science.

In the book How to Solve It [Polya 1945], Polya states four phases of problem
solving. These steps are important for programming as well.

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan, checking each step.

4. Reexamine and reconsider the solution. (And, of course, reexamine the
understanding of the problem, the plan, and the way the plan was carried
out.)

20.4 Problem-Solving Strategies

There are many problem-solving strategies applicable to programming in general
and functional programming in particular. We have seen some of these in the
earlier chapters and will see others in later chapters. In this section, we highlight
some of the general techniques.

20.4.1 Solve a more general problem first

The first strategy is to solve a more general problem first. That is, we solve a
“harder” problem than the specific problem at hand, then use the solution of the
“harder” problem to get the specific solution desired.

Sometimes a solution of the more general problem is actually easier to find
because the problem is simpler to state or more symmetrical or less obscured by

3

special conditions. The general solution can often be used to solve other related
problems.

Often the solution of the more general problem can actually lead to a more
efficient solution of the specific problem.

We have already seen one example of this technique: finding the first occurrence
of an item in a list.

First, we devised a program to find all occurrences in a list. Then we selected
the first occurrence from the set of all occurrences. (Lazy evaluation of Haskell
programs means that this use of a more general solution differs very little in
efficiency from a specialized version.)

We have also seen several cases where we have generalized problems by adding
one or more accumulating parameters. These “harder” problems can lead to
more efficient tail recursive solutions.

For example, consider the tail recursive Fibonacci program we developed in a
previous chapter. We added two extra arguments to the function.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Another approach is to use the tupling technique. Instead of adding extra
arguments, we add extra results.

For example, in the Fibonacci program fastfib below, we compute (fib n,
fib (n+1)) instead of just fib n. This is a harder problem, but it actually
gives us more information to work with and, hence, provides more opportunity
for optimization. (We formally derive this solution in a later chapter.)

fastfib :: Int -> Int
fastfib n | n >= 0 = fst (twofib n)

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n = (b,a+b)

where (a,b) = twofib (n-1)

20.4.2 Solve a simpler problem first

The second strategy is to solve a simpler problem first. After solving the simpler
problem, we then adapt or extend the solution to solve the original problem.

Often the mass of details in a problem description makes seeing a solution
difficult. In the previous technique we made the problem easier by finding a

4

more general problem to solve. In this technique, we move in the other direction:
we find a more specific problem that is similar and solve it.

At worst, by solving the simpler problem we should get a better understanding
of the problem we really want to solve. The more familiar we are with a problem,
the more information we have about it, and, hence, the more likely we will be
able to solve it.

At best, by solving the simpler problem we will find a solution that can be easily
extended to build a solution to the original problem.

Consider a program to convert a positive integer of up to six digits to a string
consisting of the English words for that number. For example, 369027 yields
the string:

three hundred and sixty-nine thousand and twenty-seven

To deal with the complexity of this problem, we can work as follows:

a. Solve the problem of converting a two-digit number to words. (The single
digit numbers and numbers in teens are special cases.)

b. Then extend the two-digit solution to three digits.
c. Then extend three-digit solution to to six digits.

See Section 4.1 of the classic Bird and Wadler textbook [Bird 1988] for the details
of this problem and a solution.

The process of generalizing first-order functions into higher-order functions is
another example of this “solve a simpler problem first” strategy. Recall how we
motivated the development of the higher-order library functions such as map,
filter, and foldr. Also consider the function generalization approach used in
the cosequential processing case study.

20.4.2.1 Reuse off-the-shelf solutions to standard subproblems

The third strategy is to reuse an off-the-shelf solutions to a standard subproblem.

We have been doing this all during this semester, especially since we began began
studying polymorphism and higher-order functions.

The basic idea is to identify standard patterns of computation (e.g. standard
prelude functions such as length, take, zip, map, filter, foldr) that will solve
some aspects of the problem and then combine (e.g. using function composition)
these standard patterns with your own specialized functions to construct a
solution to the problem.

We have seen several examples of this technique in this textbook and its exercises.

See section 4.2 of the classic Bird and Wadler textbook [Bird 1988] for a case study
that develops a package of functions to do arithmetic on variable length integers.
The functions take advantage of several of the standard prelude functions.

5

20.4.3 Solve a related problem

The fourth strategy is to solve a related problem. After solving the related
problem, we then transform the solution of the related problem to get a solution
to the original problem.

Perhaps we can find an entirely different problem formulation (i.e. stated in
different terms) for which we can readily find a solution. Then that solution can
be converted into a solution to the problem at hand.

For example, we can recast a problem in terms of mathematical or logical
frameworks (e.g. sets, relations, graphs, finite state machines, grammars, or
algebraic structures), solve the corresponding problem in those terms, and then
interpret the result for the original problem. The simplification provided by the
frameworks may reveal solutions that are obscured in the details of the problem.
We can also take advantage of the theory and techniques that have been found
previously for the mathematical frameworks.

Consider the problem of breaking a string of text into the list of its component
lines.

This is not trivial. However, the “inverse” problem is trivial. All that is needed
to convert a list of lines to a string of text is to insert linefeed characters between
the lines.

We can first solve the inverse problem (line-folding) and then use it to calculate
what the line-breaking program must be. (See Section 4.3 of the Bird and Wadler
textbook [Bird 1988] and a Chapter 27 in this textbook.)

20.4.4 Separate concerns

The fifth strategy is to separate concerns. That is, we partition the problem into
logically separate problems, solve each problem separately, then combine the
solutions to the subproblems to construct a solution to the problem at hand.

As we have seen in the above strategies, when a problem is complex and difficult
to attack directly, we search for simpler, but related, problems to solve, then
build a solution to the complex problem from the simpler problems.

We have seen examples of this approach in earlier chapters and homework
assignments. We separated concerns when we used stepwise refinement to
develop a square root function, data abstraction in the rational number case
study, and function pipelines.

Consider the development of a program to print a calendar for any year in
various formats. We can approach this problem by first separating it into two
independent subproblems:

a. building a calendar

6

b. formatting the output

After solving each of these simpler problems, the more complex problem can be
solved easily by combining the two solutions. (See Section 4.5 of the classic Bird
and Wadler textbook [Bird 1988] for the details of this problem and a solution.)

20.4.5 Divide and conquer

The sixth strategy is divide and conquer. This is a special case of the “solve a
simpler problem first” strategy. In this technique, we must divide the problem
into subproblems that are the same as the original problem except that the size
of the input is smaller.

This process of division continues recursively until we get a problem that can
be solved trivially, then we combined we reverse the process by combining the
solutions to subproblems to form solutions to larger problems.

Examples of divide and conquer from earlier chapters include the logarithmic
exponentiation function expt3 and the merge sort function msort.

Another common example of the divide and conquer approach is binary search.
(See Section 6.4.3 of the classic Bird and Wadler textbook [Bird 1988].)

Chapter 29 of this textbook examines divide and conquer algorithms in terms of
a higher order function that captures the pattern.

There are, of course, other strategies that can be used to approach problem
solving.

20.5 What Next?

TODO

20.6 Exercises

TODO

20.7 Acknowledgements

In 2016 and 2017, I adapted and revised my previous notes to form Chapter 7,
More List Processing and Problem Solving, in the 2017 version of this textbook.
In particular, I drew the information on Problem Solving from:

• chapter 10 of my Notes on Functional Programming with Haskell for
discussion of problem-solving techniques in section 7.4

7

The Notes drew on chapters 4 and 6 of [Bird 1988], chapter 4 of [Thompson
2011], [Polya 1945], and [Polya 1981].

• part of chapter 12 of Notes on Functional Programming with Haskell for
discussion of the tupling technique incorporated into subsection 7.4.2.1

In Summer 2018, I divided the previous More List Processing and Problem
Solving chapter back into two chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 7.2-7.3 became the basis for new Chapter 18, More List
Processing, and previous section 7.4 (essentially the two items above) became
the basis for new Chapter 20 (this chapter), Problem Solving.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

20.8 References

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Bird 1998]: Richard Bird. Introduction to Functional Programming using
Haskell, Second Edition, Prentice Hall, 1998.

[Bird 2015]: Richard Bird. Thinking Functionally with Haskell, Second Edition,
Cambridge University Press, 2015.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Polya 1945]: George Polya, How to Solve It, Princeton University Press, 1945.
[Polya 1981]: George Polya, Mathematical Discovery: On Understanding,

Learning and Teaching Problem Solving, Wiley, 1981.
[Thompson 2011]: Simon Thompson. Haskell: The Craft of Programming,

First Edition, Addison Wesley, 1996; Second Edition, 1999; Third Edition,
Pearson, 2011.

20.9 Terms and Concepts

Problem solving, Polya, information, know-how, bonafide experience, problem-
solving strategies, solve a more general (harder) problem first, accumulating
parameters, tupling, solve a simpler problem first, reuse an off-the-shelf solution,
higher-order functions, stepwise refinement, data abstraction, solve a related
problem, separate concerns, divide and conquer.

8

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	Problem Solving
	Chapter Introduction
	Problem Solving Philosophy
	Polya's Insights
	Problem-Solving Strategies
	Solve a more general problem first
	Solve a simpler problem first
	Reuse off-the-shelf solutions to standard subproblems

	Solve a related problem
	Separate concerns
	Divide and conquer

	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

