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Wally World POP Project

I wrote this project description for CSci 450/503 Assignment #2 in Fall 2018.

2018-10-01: Changed format slightly, no changes in detail.

2018-10-08: Removed spurious “{.haskell}” from Exercise #5 statement

2018-10-11: Added Note to Exercise 7 (about unknown barcode)

Problem Description and Initial Design

Wally World Marketplace (WWM) is a “big box” store selling groceries, dry goods,
hardware, electronics, etc. In this project, we develop part of a point-of-purchase
(POP) system for WWM.

The barcode scanner at a WWM POP—i.e. checkout counter—generates a list
of barcodes for the items in a customer’s shopping cart. For example, a cart
with nine items might result in the list:

[ 1848, 1620, 1492, 1620, 1773, 2525, 9595, 1945, 1066 ]
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Note that there are two instances of the item with barcode 1620.

The primary goal of this project is to develop a Haskell module WWMPOP (in
file WWMPOP.hs) that takes a list of barcodes corresponding to the items in a
shopping cart and generates the corresponding printable receipt. The module
consists of several functions that work together. We build these incrementally in
a somewhat bottom-up manner.

Let’s consider how to model the various kinds of “objects” in our application.
The basic objects include:

• barcodes for products, which we represent as integers

• prices of products, which we represent as integers denoting cents

• names of products, which we represent as strings

We introduce the following Haskell type aliases for these basic objects above:

type BarCode = Int
type Price = Int
type Name = String

We associate barcodes with the product names and prices using a “database”
represented as a list of tuples. We represent this price list database using the
following type alias:

type PriceList = [(BarCode,Name,Price)]

An example price list database is:

database :: PriceList
database = [ (1848, "Vanilla yogurt cups (4)", 188),

(1620, "Ground turkey (1 lb)", 316),
(1492, "Corn flakes cereal", 299),
(1773, "Black tea bags (100)", 307),
(2525, "Athletic socks (6)", 825),
(9595, "Claw hammer", 788),
(1945, "32-in TV", 13949),
(1066, "Zero sugar cola (12)", 334),
(2018, "Haskell programming book", 4495)

]

To generate a receipt, we need to take a list of barcodes from a shopping cart
and generate a list of prices associated with the items in the cart. From this list,
we can generate the receipt.

We introduce the type aliases:

type CartItems = [BarCode]
type CartPrices = [(Name,Price)]

We thus identify the need for a Haskell function
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priceCart :: PriceList -> CartItems -> CartPrices

that takes a database of product prices (i.e. a price list) and a list of barcodes of
the items in a shopping cart and generates the list of item prices.

Of course, we must determine the relevant sales taxes due on the items and
determine the total amount owed. We introduce the following type alias for the
bill:

type Bill = (CartPrices, Price, Price, Price)

The three Price items above are for Subtotal, Tax, and Total amounts associated
with the purchase (printed on the bottom of the receipt).

We thus identify the need for a Haskell function

makeBill :: CartPrices -> Bill

that takes the list of item prices and constructs a Bill tuple. In carrying out
this calculation, the function uses the following n constant:

taxRate :: Double
taxRate = 0.07

Given a bill, we must be able to convert it to a printable receipt. Thus we
introduce the Haskell function

formatBill :: Bill -> String

that takes a bill tuple and generates the receipt. It uses the following named
constant for the width of the line:

lineWidth :: Int
lineWidth = 34

Given the above functions, we can put the above functionality together with the
Haskell function:

makeReceipt :: PriceList -> CartItems -> String

that does the end-to-end conversion of a list of barcodes to a printed receipt
given an applicable price database, tax rate, and line width.

Given the example shopping cart items and price list database, we get the
following receipt when printed.

Wally World Marketplace

Vanilla yogurt cups (4).......1.88
Ground turkey (1 lb)..........3.16
Toasted oat cereal............2.99
Ground turkey (1 lb)..........3.16
Black tea bags (100)..........3.07
Athletic socks (6)............8.25
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Claw hammer...................7.88
32-in. television...........139.49
Zero sugar cola (12)..........3.34

Subtotal....................176.26
Tax..........................12.34
Total.......................188.60

The following exercises guide you to develop the above functions incrementally.

Useful Prelude Functions

In the exercises in the next subsection, you may want to consider using some of
the following:

• numeric functions from the Prelude library such as such as:

– div, integer division truncated toward negative infinity, and quot,
integer division truncated toward 0

– rem and mod satisfy the following for y /= 0

(x `quot` y)*y + (x `rem` y) == x
(x `div` y)*y + (x `mod` y) == x

– floor, ceiling, truncate, and round that convert real numbers to
integers; truncate truncates toward 0 and round rounds away from
0

– fromIntegral converts integers to Double (and from Integer to Int

– show converts numbers to strings

• first-order list functions (Chapters 13-14) from the Prelude such as head,
tail, ++, take, drop, length, sum, and product

• Prelude function replicate :: Int -> a -> [a] such that replicate n e
returns a list of n copies of e

• higher-order list functions (Chapters 15-17) from the Prelude such as map,
filter, foldr, foldl, and concatMap

• list comprehensions (Chapter 18)

Exercises

Note: Most of the exercises in this project can be programmed without direct
recursions. Consider the Prelude functions listed in the previous subsection.
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Also remember that the character code '\n' is the newline character; it denotes
the end of a line in Haskell strings.

This project defines several type aliases and the constants lineWidth and
taxRate that should be defined and used in the exercises.

1. Develop the Haskell function

formatDollars :: Price -> String

that takes a Price in cents and formats a string in dollars and cents. For
example, formatDollars 1307 returns the string 13.07. (Note the 0 in
07.)

2. Using formatDollars above, develop the Haskell function

formatLine :: (Name, Price) -> String

that takes an item and formats a line of the receipt for that item. For
example,

formatLine ("Claw hammer",788)

yields the string:

"Claw hammer...................7.88\n"

This string has length lineWidth not including the newline character. The
space between the item’s name and cost is filled using '.' characters.

3. Using the formatLine function above, develop the Haskell function

formatLines :: CartPrices -> String

that takes a list of priced items and formats a string with a line for each
item. (In general, the resulting string will consist of several lines, each
ending with a newline.)

4. Develop the Haskell function

calcSubtotal :: CartPrices -> Price

that takes a list of priced items and calculates the sum of the prices (i.e. the
subtotal).

5. Develop the Haskell function

formatAmt :: String -> Price -> String

that takes a label string and a price amount and generates a line of the
receipt for that label

For example,

formatAmt "Total" 18860

generates the string:‘
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"Total.......................188.60\n"`.

6. Develop the Haskell function

formatBill :: Bill -> String

that takes a Bill tuple and generates a receipt string.

7. Develop the Haskell function

look :: PriceList -> BarCode -> (Name,Price)

that takes a price list database and a barcode for an item and looks up
the name and price of the item.

(2018-10-11) Note: If the BarCode argument does not occur in the
PriceList, then look should return the tuple ("None",0).

8. Now develop the Haskell function

priceCart :: PriceList -> CartItems -> CartPrices

defined above.

9. Now develop the Haskell function

makeBill :: CartPrices -> Bill

defined above. It takes a list of priced items and generates a bill tuple. It
uses the taxRate constant.

10. Now develop the Haskell function

makeReceipt :: PriceList -> CartItems -> String

defined above. This function defines the end-to-end processing that takes
the list of items from the shopping cart and generates the receipt.

11. Develop Haskell functions

addPL :: PriceList -> BarCode -> (Name,Price)
-> PriceList

removePL :: PriceList -> BarCode -> PriceList

Function removePL takes an “old” price list and a barcode to remove and
returns a “new” price list with any occurrences of that barcode removed.

Function addPL takes an “old” price list, a barcode, and a name/price pair
to add and returns a price list with the item added. (If the the barcode is
already in the list, the old entry should be removed.)
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