Exploring Languages with Interpreters

Contents

and Functional Programming
Chapter 3

H. Conrad Cunningham

18 October 2018

3 Object-Based Paradigms
3.1 Chapter Introduction
3.2 Motivation Lo L
3.3 Object Model

3.3.1

3.3.2
3.3.3
3.3.4
3.3.5

Objects
3.3.1.1 Essential characteristics
3.3.1.2 Important but non-essential characteristics . . .
Classes v v i e
Inheritance
Subtype polymorphism
Example in Python 3

3.4 Prototype-based Paradigm

3.4.1
3.4.2
3.4.3
3.4.4

Prototype conceptso
Lua as object-based language
Examplein Lua
Observations

3.5 What Next? e
3.6 Exercises
3.7 Acknowledgements Lo
3.8 References
3.9 Terms and Concepts

Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi

211 Weir Hall
P.O. Box 1848

University, MS 38677

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of October 2018 is a
recent version of Firefox from Mozilla.

3 Object-Based Paradigms

3.1 Chapter Introduction

The imperative-declarative taxonomy described in the previous chapter divides
programming styles and language features on how they handle state and how
they are executed.

The previous chapter also mentioned other paradigms such as procedural, modu-
lar, object-based, and concurrent.

The dominant paradigm since the early 1990s has been the object-oriented
paradigm. Because this paradigm is likely familiar with most readers, it is useful
to examine it in more detail.

Thus the goals of this chapter are to examine the characteristics of:
o the object-oriented paradigm

o related paradigms such as the object-based, class-based, and prototype-
based paradigms

3.2 DMotivation

In contemporary practice, most software engineers approach the design of pro-
grams from an object-oriented perspective.

Key idea (notion?) in object orientation: The real world can be accu-
rately described as a collection of objects that interact.

This approach is based on the following assumptions:

1. Describing large, complex systems as interacting objects make them easier
to understand than otherwise.

2. The behaviors of real world objects tend to be stable over time.

3. The different kinds of real world objects tend to be stable. (That is, new
kinds appear slowly; old kinds disappear slowly.)

4. Changes tend to be localized to a few objects.

Assumption 1 simplifies requirements analysis, software design, and
implementation—makes them more reliable.

Assumptions 2 and 3 support reuse of code, prototyping, and incremental
development.

Assumption 4 supports design for change.

The object-oriented approach to software development:

o uses the same basic entities (i.e. objects) throughout the software develop-
ment lifecycle

¢ identifies the basic objects during analysis

« identifies lower-level objects during design, reusing existing object descrip-
tions where appropriate

o implements the objects as software structures (e.g. Java classes)

e maintains the object behaviors

3.3 Object Model

We discuss object orientation in terms of an object model. Our object model
includes four basic components:

1. objects (i.e. abstract data structures)

2. classes (i.e. abstract data types)

3. inheritance (hierarchical relationships among abstract data types)
4. subtype polymorphism

Some writers consider dynamic binding a basic component of object orientation.
Here we consider it an implementation technique for subtype polymorphism.

Now let’s consider each of four components of the object model.

3.3.1 Objects

For languages in the object-based paradigms, we require that objects exhibit three
essential characterics. Some writers consider one or two other other characteristics
as essential. Here we consider these as important but non-essential characteristics
of the object model.

3.3.1.1 Essential characteristics

An object must exhibit three essential characteristics:
a. state
b. operations
c. identity

An object is a separately identifiable entity that has a set of operations and
a state that records the effects of the operations. An object is typically a
first-class entity that can be stored in variables and passed to or returned from
subprograms.

The state is the collection of information held (i.e. stored) by the object.
e It can change over time.
e It can change as the result of an operation performed on the object.
e It cannot change spontaneously.

The various components of the state are sometimes called the attributes of the
object.

An operation is a procedure that takes the state of the object and zero or more
arguments and changes the state and/or returns one or more values. Objects
permit certain operations and not others.

If an object is mutable, then an operation may change the stored state so that a
subsequent operation on that object acts upon the modified state; the language
is thus imperative.

If an object is immutable, then an operation cannot change the stored state;
instead the operation returns a new object with the modified state.

Identity means we can distinguish between two distinct objects (even if they
have the same state and operations).

As an example, consider an object for a student desk in a simulation of a
classroom.

o A student desk is distinct from the other student desks and, hence, has a
unique identity.

e The relevant state might be attributes such as location, orientation, person
using, items in the basket, items on top, etc.

o The relevant operations might be state-changing operations (called mutator,
setter, or command operations) such as “move the desk”, “seat student”,
or “remove from basket” or might be state-observing operations (called
accessor, getter, observer, or query operations) such as “is occupied” or
“report items on desktop”.

A language is object-based if it supports objects as a language feature.

Object-based languages include Ada, Modula, Clu, C++, Java, Scala, C#,
Smalltalk, and Python 3.

Pascal (without module extensions), Algol, Fortran, and C are not inherently
object-based.

3.3.1.2 Important but non-essential characteristics

Some writers require that an object have additional characteristics, but this
book considers these as important but non-essential characteristics of objects:

d. encapsulation
e. independent lifecycle

The state may be encapsulated within the object—that is, not be directly visible
or accessible from outside the object.

The object may also have an independent lifecycle—that is, the object may
exist independently from the program unit that created it. Its lifetime is not
determined by the program unit that created it.

We do not include these as essential characteristics because they do not seem
required by the object metaphor.

Also, some languages we wish to categorize as object-based do not exhibit one
or both of these characteristics. There are languages that use a modularization
feature to enforce encapsulation separately from the object (or class) feature.
Also, there are languages that may have local “objects” within a function or
procedure.

In languages like Python 3, Lua, and Oberon, objects exhibit an independent
lifecycle but do not themselves enforce encapsulation. Encapsulation may be
supported by the module mechanism (e.g. in Oberon and Lua) or partly by a
naming convention (e.g. in Python 3).

In C++, some objects may be local to a function and, hence, be allocated on the
runtime stack. These objects are deallocated upon exit from the function. These
object may exhibit encapsulation, but do not exhibit an independent lifecycle.

3.3.2 Classes

A class is a template or factory for creating objects.
o A class describes a collection of related objects (i.e. instances of the class).

e Objects of the same class have common operations and a common set of
possible states.

e The concept of class is closely related to the concept of type.
A class description includes definitions of:

e operations on objects of the class

o the set of possible states

As an example, again consider a simulation of a classroom. There might be a
class StudentDesk from which specific instances can be created as needed.

An object-based language is class-based if the concept of class occurs as a
language feature and every object has a class.

Class-based languages include Clu, C++, Java, Scala, C#, Smalltalk, Ruby, and
Ada 95. Ada 83 and Modula are not class-based.

At their core, JavaScript and Lua are object-based but not class-based.

In statically typed, class-based languages such as Java, Scala, C++, and C#
classes are treated as types. Instances of the same class have the same (nominal)
type.

However, some dynamically typed languages may have a more general concept
of type: If two objects have the same set of operations, then they have the same
type regardless of how the object was created. Languages such as Smalltalk and
Ruby have this characteristic—sometimes informally called duck typing. (If it
walks like a duck and quacks like a duck, then it is a duck.)

See the Types chapter for more discussion of types.

3.3.3 Inheritance

A class C inherits from class P if C’s objects form a subset of P’s objects.

e Class C’s objects must support all of the class P’s operations (but perhaps
are carried out in a special way).

¢ Class C may support additional operations and an extended state (i.e. more
information fields).

e Class C is called a subclass or a child or derived class.
e (lass P is called a superclass or a parent or base class.

¢ Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in base classes and shared among the subclasses.

As an example, again consider the student desks in a simulation of a classroom.
The StudentDesk class might be derived (i.e. inherit) from a class Desk, which in
turn might be derived from a class Furniture. In diagrams, there is a convention
to draw arrows (e.g. «—) from the subclass to the superclass.

Furniture <— Desk <— StudentDesk

The simulation might also include a ComputerDesk class that also derives from
Desk.

Furniture <— Desk <— ComputerDesk

We can also picture the above relationships among these classes with a class
diagram as shown in Figure 3-1.

Furniture

/ﬂ

Desk Chair

ComputerDesk StudentDesk

Figure 3-1: Classroom Simulation Inheritance Hierarchy

In Java and Scala, we can express the above inheritance relationships using the
extends keyword as follows.

class Furniture // extends cosmic root class for references
{ ... 1} // (java.lang.0Object, scala.AnyRef)

class Desk extends Furniture

{ ... 3}

class StudentDesk extends Desk
{ ...

class ComputerDesk extends Desk

{ ... 3}

Both StudentDesk and ComputerDesk objects will need operations to simulate a
move of the entity in physical space. The move operation can thus be implemented
in the Desk class and shared by objects of both classes.

Invocation of operations to move either a StudentDesk or a ComputerDesk will
be bound to the general move in the Desk class.

The StudentDesk class might inherit from a Chair class as well as the Desk

class.
Furniture <— Chair <— StudentDesk

Some languages support multiple inheritance as shown in Figure 3-2 for
StudentDesk (e.g. C++, Eiffel, Python 3). Other languages only support a
single inheritance hierarchy.

Furniture

/

Desk Chair

ComputerDesk StudentDesk

Figure 3-2: Classroom Simulation with Multiple Inheritance

Because multiple inheritance is both difficult to use correctly and to implement in
a compiler, the designers of Java and Scala did not include multiple inheritance
of classes as features. Java has a single inheritance hierarchy with a top-level
class named Object from which all other classes derive (directly or indirectly).
Scala is similar, with the corresponding top-level class named AnyRef.

class StudentDesk extends Desk, Chair // NOT VALID 4in Java
{ ...

To see some of the problems in implementing multiple inheritance, consider
the above example. Class StudentDesk inherits from class Furniture through
two different paths. Do the data fields of the class Furniture occur once or
twice? What happens if the intermediate classes Desk and Chair have conflicting
definitions for a data field or operation with the same name?

The difficulties with multiple inheritance are greatly decreased if we restrict our-
selves to inheritance of class interfaces (i.e. the signatures of a set of operations)

rather than a supporting the inheritance of the class implementations (i.e. the
instance data fields and operation implementations). Since interface inheritance
can be very useful in design and programming, the Java designers introduced a
separate mechanism for that type of inheritance.

The Java interface construct can be used to define an interface for classes
separately from the classes themselves. A Java interface may inherit from (i.e.
extend) zero or more other interface definitions.

interface Location3D

{ ... 1}

interface HumanHolder

{ ... 3
interface Seat extends Location3D, HumanHolder
{ ...

A Java class may inherit from (i.e. implement) zero or more interfaces as well
as inherit from (i.e. extend) exactly one other class.

interface BookHolder

{ ... 1}

interface BookBasket extends Location3D, BookHolder

{ ... 3}

class StudentDesk extends Desk implements Seat, BookBasket
{ ... 1}

Figure 3-3 shows this interface-based inheritance hierarchy for the classroom
simulation example. The dashed lines represent the implements relationship.

Furniture HumanHolder Location3D BookHolder
Desk Chair Seat BookBasket
? A /
| L7
|
ComputerDesk StudentDesk

Figure 3-3: Classroom Simulation with Interfaces

10

This definition requires the StudentDesk class to provide actual implementations
for all the operations from the Location3D, HumanHolder, BookHolder, Seat,
and BookBasket interfaces. The Location3D operations will, of course, need
to be implemented in such a way that they make sense as part of both the
HumanHolder and BookHolder abstractions.

The Scala trait provides a more powerful, and more complex, mechanism
than Java’s original interface. In addition to signatures, a trait can define
method implementations and data fields. These traits can be added to a class
in a controlled, linearized manner to avoid the semantic and implementation
problems associated with multiple inheritance of classes. This is called mizin
inheritance.

Java 8+ generalizes interfaces to allow default implementations of methods.

Most statically typed languages treat subclasses as subtypes. That is, if C is a
subclass of P, then the objects of type C are also of type P. We can substitute a
C object for a P object in all cases.

However, the inheritance mechanism in languages in most class-based languages
(e.g. Java) does not automatically preserve substitutability. For example, a
subclass can change an operation in the subclass to do something totally different
from the corresponding operation in the parent class.

3.3.4 Subtype polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. Polymorphism appears in
several forms in programming languages. We will discuss these more later.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(i.e. procedure or function call) with the appropriate operation implementation
in an inheritance (subtype) hierarchy.

This form of polymorphism is usually carried out at run time. That implementa-
tion is called dynamic binding. Given an object (i.e. class instance) to which an
operation is applied, the system will first search for an implementation of the
operation associated with the object’s class. If no implementation is found in
that class, the system will check the superclass, and so forth up the hierarchy
until an appropriate implementation is found. Implementations of the operation
may appear at several levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

11

As an example, again consider the simulation of a classroom. As in our discussion
of inheritance, suppose that the StudentDesk and ComputerDesk classes are
derived from the Desk class and that a general move operation is implemented
as a part of the Desk class. This could be expressed in Java as follows:

class Desk extends Furniture

{
public void move(...)
}
class StudentDesk extends Desk
{ ...
// mno move(...) operation here
}
class ComputerDesk extends Desk
{ ...
// mo move(...) operation here
}

As we noted before, invocation of operations to move either a StudentDesk or a
ComputerDesk instance will be bound to the general move in the Desk class.

Extending the example, suppose that we need a special version of the move
operation for ComputerDesk objects. For instance, we need to make sure that
the computer is shut down and the power is disconnected before the entity is
moved.

To do this, we can define this special version of the move operation and associate
it with the ComputerDesk class. Now a call to move a ComputerDesk object will
be bound to the special move operation, but a call to move a StudentDesk object
will still be bound to the general move operation in the Desk class.

The definition of move in the ComputerDesk class is said to override the definition
in the Desk class.

In Java, this can be expressed as follows:

class Desk extends Furniture
{

public void move(...)

class StudentDesk extends Desk

{

12

// no move(...) operation here

X
class ComputerDesk extends Desk
{
public void move(...)
b

A class-based language is object-oriented if class hierarchies can be incrementally
defined by an inheritance mechanism and the language supports polymorphism
by inheritance along these class hierarchies.

Object-oriented languages include C++, Java, Scala, C#, Smalltalk, and Ada 95.
The language Clu is class-based, but it does not include an inheritance facility.

Other object-oriented languages include Objective C, Object Pascal, Eiffel, and
Oberon 2.

3.3.5 Example in Python 3

Python 3 is a dynamically typed language with support for imperative, procedural,
modular, object-oriented, and (to a limited extent) functional programming
styles. It’s object model supports state, operations, identity, and an independent
lifecycle. It provides some support for encapsulation. It has classes, single and
multiple inheritance, and subtype polymorphism.

Let’s again examine the counting problem from Chapter 2 from the standpoint
of object-oriented programming in Python 3. The following code defines a class
named Counting00. It defines four instance methods and two instance variables.

Note: By instance variable and instance method we mean variables and instances
associated with an object, an instance of a class.

class Counting00: # (1)
def __init__(self,c,m): # (2,3)
self.count = c # (4)
self.maxc =m
def has_more(self,c,m): # (5)

return ¢ <= m

def adv(self): # (6)
self.count = self.count + 1

def counter(self): # (7)

13

while self.has_more(self.count,self.maxc):
print (f'{self.count}') # (8)
self.adv()

The following notes explain the numbered items in the above code.

1.

8.

By default, a Python 3 class inherits from the cosmic root class object.
If a class inherits from some other class, then we place the parent class’s
name in parenthesis after the class name, as with class Times2 below.
(Python 3 supports multiple inheritance, so there can be multiple class
names separated by commas.)

. Python 3 classes do not normally have explicit constructors, but we often

define an initialization method which has the special name __init__.

. Unlike object-oriented languages such as Java, Python 3 requires that

the receiver object be passed explicitly as the first parameter of instance
methods. By convention, this is a parameter named self.

. An instance of the class Counting00 has two instance variables, count and

maxc. Typically, we create these dynamically by explicitly assigning a value
to the name. We can access these values in expressions (e.g. self.count).

. Method has_more() is a function that takes the receiver object and values

for the current count and maximum values and returns True if and only
there are additional values to generate. (Although an instance method, it
does not access the instance’s state.)

. Method adv () is a procedure that accesses and modifies the state (i.e. the

instance variables), setting self.count to a new value closer to the maxi-
mum value self.maxc.

. Method counter () is a procedure intended as the primary public interface

to an instance of the class. It uses function method has_more() to deter-
mine when to stop the iteration, procedure method adv() to advance the
variable count from one value to the next value, and the print function
to display the value on the standard output device.

Expression f'{self.count}' is a Python 3.7 interpolated string.

In terms of the Template Method design pattern [Gamma 1995], counter is
intended as a template method that encodes the primary algorithm and is not
intended to be overridden. Methods has_more() and adv() are intended as
hook methods that are often overriden to give different behaviors to the class.

Consider the following fragment of code.

ctr = Counting00(0,10)
ctr.counter()

The first line above creates an instance of the Counting00 class, initializes its
instance variables count and maxc to 0 and 10, and stores the referene in variable

14

ctr. The call ctr.counter () thus prints the values 0 to 10, one per line, as do
the programs from Chapter 2.

However, we can create a subclass that overrides the definitions of the hook meth-
ods has_more () and adv() to give quite different behavior without modifying
class Counting00.

class Times2(Counting00) : # inherits from Counting00
def has_more(self,c,m): # overrides
return ¢ != 0 and abs(c) <= abs(m)
def adv(self): # overrides

self.count = self.count * 2
Now consider the following code fragment.

ctr2 = Times2(-1,10)
ctr2.counter ()

This generates the sequence of values -1, -2, -4, and -8, printed one per line.

The call to any method on an instance of class Times2 is polymorphic. The
system dynamically searches up the class hierarchy from Times2 to find the
appropriate function. It finds has_more () and adv() in Times2 and counter ()
in parent class CountingQO.

The code for this section is in source file Counting00. py.

3.4 Prototype-based Paradigm

Classes and inheritance are not the only way to support relationships among
objects in object-based languages. Another approach of growing importance is
the use of prototypes.

3.4.1 Prototype concepts

A prototype-based language does not have the concept of class as defined above.
It just has objects. Instead of using a class to instantiate a new object, a program
copies (or clones) an existing object—the prototype—and modifies the copy to
have the needed attributes and operations.

Each prototype consists of a collection of slots. Each slot is filled with either a
data attribute or an operation.

This cloning approach is more flexible than the class-based approach.

In a class-based language, we need to define a new class or subclass to create a
variation of an existing type. For example, we may have a Student class. If we

15

CountingOO.py

want to have students who play chess, then we would need to create a new class,
say ChessPlayingStudent, to add the needed data attributes and operations.

Aside: Should Student be the parent ChessPlayingStudent? or should
ChessPlayer be the parent? Or should we have fields of ChessPlayingStudent
that hold Student and ChessPlayer objects?

In a class-based language, the boundaries among categories of objects specified
by classes should be crisply defined. That is, an object is in a particular class or
it is not. Sometimes this crispness may be unnatural.

In a prototype-based language, we simply clone a student object and add new
slots for the added data and operations. This new object can be a prototype for
further objects.

In a prototype-based language, the boundaries between categories of objects
created by cloning may be fuzzy. One category of objects may tend to blend
into others. Sometimes this fuzziness may be more natural.

Consider categories of people associated with a university. These categories
may include Faculty, Staff, Student, and Alumnus. Consider a student who
gets a BSCS degree, then accepts a staff position as a programmer and stays a
student by starting an MS program part-time, and then later teaches a course
as a graduate student. The same person who started as a student thus evolves
into someone who is in several categories later. And he or she may also be a
chess player.

Instead of static, class-based inheritance and polymorphism, some languages
exhibit prototype-based delegation. If the appropriate operation cannot be found
on the current object, the operation can be delegated to its prototype, or perhaps
to some other related, object. This allows dynamic relationships along several
dimensions. It also means that the “copying” or “cloning” may be partly logical
rather than physical.

Prototypes and delegation are more basic mechanisms than inheritance and
polymorphism. The latter can often be implemented (or perhaps “simulated”)
using the former.

Self, NewtonScript, JavaScript, Lua, and Io are prototype-based languages.
Python with package prototype.py is also prototype-based.

Let’s look at Lua as a prototype-based language.

3.4.2 Lua as object-based language

Lua is a dynamically typed, multiparadigm language. The language designers
stress the following design principles [Lua 2018]:

¢ portability
o embeddability

16

o efficiency
o simplicity

To realize these principles, the core language implementation:
e can only use standard C and the standard C library

o must be efficient in use of memory and processor time (i.e. keep the
interpreter small and fast)

e must support interoperability with C programs in both directions (i.e. can
call or be called by C programs)

C is ubiquitous, likely being the first higher-level language implemented for any
new machine, whether a small microcontroller or a large multiprocessor. So this
implementation approach supports the portability, embeddability, and efficiency
design goals.

Because of Lua’s strict adherence to the above design principles, it has become
a popular language for extending other applications with user-written scripts or
templates. For example, it is used for this purpose in some computer games and
by Wikipedia. Also, Pandoc, the document conversion tool used in production
of this textbook, enables scripts to be written in Lua. (The Pandoc program
itself is written in Haskell.)

The desire for a simple but powerful language led the designers to adopt an
approach that separates mechanisms from policy. As noted on the Lua website
[Lua 2018],

A fundamental concept in the design of Lua is to provide meta-
mechanisms for implementing features, instead of providing a host of
features directly in the language. For example, although Lua is not a
pure object-oriented language, it does provide meta-mechanisms for
implementing classes and inheritance. Lua’s meta-mechanisms bring
an economy of concepts and keep the language small, while allowing
the semantics to be extended in unconventional ways.

Lua provides a small set of quite powerful primitives. For example, it includes only
one data structure—the table (dictionary, map, or object in other languages)—but
ensures that it is efficient and flexible for a wide range of uses.

Lua’s tables are objects as described earlier in this chapter. Each object has its
own:

o state (i.e. values associated with keys)
o identity independent of state
e lifecycle independent of the code that created it

In addition, a table can have its own operations by associating function closures
with keys.

17

Note: By function closure, we mean the function’s definition plus aspects of its
environment necessary (e.g. variables variables outside the function) necessary
for the function to be executed.

So a key in the table represents a slot in the object. The slot can be occupied
by either a data attribute’s value or the function closure associated with an
operation.

Lua tables do not directly support encapsulation, but there are ways to build
structures that encapsulate key data or operations.

Lua’s metatable mechanism, particularly the __index metamethod, enables an
access to an undefined key to be delegated to another table (or to result in a
call of a specified function).

Thus tables and metatables enable the prototype-based paradigm as illustrated
in the next section.

As in Python 3, Lua requires that the receiver object be passed as an argument
to object-based function and procedure calls. By convention, it is passed as the
first argument, as shown below.

obj.method(obj, other_arguments)

Lua has a bit of syntactic sugar—the : operator—to make this more convenient.
The following Lua expression is equivalent to the above.

obj:method (other_arguments)

The Lua interpreter evaluates the expression obj to get the receiver object
(i.e. table), then retrieves the function closure associated with the key named
method from the receiver object, then calls the function, passing the receiver
object as its first parameter. In the body of the function definition, the receiver
object can be referenced by parameter name self.

We can use a similar notation to define functions to be methods associated with
objects (tables).

3.4.3 Example in Lua

The Lua code below, from file CountingPB. lua, implements a Lua module similar
to the Python 3 Counting00 class given in an earlier section. It illustrates how
to define Lua modules as well as prototypes.

-- File CountingPB. lua
local CountingPB = {count = 1, maxc = 0} —— (1)

function CountingPB:new(mixin) - (2)
mixin = mixin or {} -= (5)
local obj = { __index = self } - (4)

18

for k, v in pairs(mixin) do -- (5)

if k ~= "__index" then
objlk] = v
end
end
return setmetatable(obj,obj) -- (6,7)
end
function CountingPB:has_more(c,m) - (2)
return ¢ <= m
end
function CountingPB:adv() -- (2)
self.count = self.count + 1
end
function CountingPB:counter () -- (2

while self:has_more(self.count,self.maxc) do
print(self.count)
self:adv()
end
end

return CountingPB -- (3

The following notes explain the numbered steps in the above code.

1. Create module object CountingPB as a Lua table with default values for
data attributes count and maxc. This object is also the top-level prototype
object.

2. Define methods (i.e. functions) new (), has_more (), adv(), and counter ()
and add them to the CountingPB table. The key is the function’s name
and the value is the function’s closure.

Method new () is the constructor for clones.

3. Return CountingPB when the module file CountingPB.1lua is imported
with a require call in another Lua module or script file.

Method new is what constructs the clones. This method:

4. Creates the clone initially as a table with only the __index set to the
object that called new (i.e. the receiver object self).

5. Copies the method new’s parameter mixin’s table entries into the clone.
This enables existing data and method attributes of the receiver object
self to be redefined and new data and method attributes to be added to
the clone.

19

If parameter mixin is undefined or an empty table, then no changes are
made to the clone.

6. Sets the clone’s metatable to be the clone’s table itself. In step 4, we had
set its metamethod __index to be the receiver object self.

7. Returns the clone object (a table) as is the convention for Lua modules.

If a Lua program accesses an undefined key of a table (or object), then the
interpreter checks to see whether the table has a metatable defined.

o If no metatable is set, then the result of the access is a nil (meaning
undefined).

o If a metatable is set, then the interpreter uses the __index metamethod to
determine what to do. If __index is a table, then the access is delegated
to that table. If __index is set a function closure, then the interpreter
calls that function. If there is no __index, then it returns a nil.

We can load the CountingPB.1lua module as follows:
local CountingPB = require "CountingPB"
Now consider the Lua assignment below:
x = CountingPB:new({count = 0, maxc = 103})

This creates a clone of object CountingPB and stores it in variable x. This clone
has its own data attributes count and maxc, but it delegates method calls back
to object CountingPB.

If we execute the call x:counter (), we get the following output:

© 0N O WN - O

—
o

Now consider the Lua assignment:
y = x:new({count = 10, maxc = 15})

This creates a clone of object in x and stores the clone in variable y. The y
object has different values for count and maxc, but it delegates the method calls
to x, which, in turn, delegates them on to CountingPB.

If we execute the call y:counter (), we get the following output:

20

10
11
12
13
14
15

Now, consider the following Lua assignment:

z = y:new({ maxc = 400,
has_more = function (self,c,m)
return ¢ ~= 0 and math.abs(c) <= math.abs(m)
end,
adv = function(self)
self.count = self.count * 2

end,
bye = function(self) print(self.msg) end
msg = "Good-Bye!" })

This creates a clone of object y that keeps x’s current value of count (which is 16
after executing y: counter ()), sets a new value of maxc, overrides the definitions
of methods has_more() and adv(), and defines new method bye() and new
data attribute msg.

If we execute the call z: counter () followed by z:bye(), we get the following
output:

16

32

64

128

256
Good-Bye!

The source code for this example is in file CountingPB.1lua. The example calls
are in file CountingPB_Test.lua.

3.4.4 Observations

How does the prototype-based (PB) paradigm compare with the object-oriented
(O0) paradigm?

e The OO paradigm as implemented in a language usually enforces a partic-
ular discipline or policy and provides syntactic and semantic support for
that policy. However, it makes programming outside the policy difficult.

e The PB paradigm is more flexible. It provides lower-level mechanisms
and little or no direct support for a particular discipline or policy. It
allows programmers to define their own policies, simple or complex policies

21

CountingPB.lua
CountingPB_Test.lua

depending on the needs. These policies can be implemented in libraries
and reused. However, PB can result in different programmers or different
software development shops using incompatible approaches.

Whatever paradigm we use (OO, PB, procedural, functional, etc.), we should be
careful and be consistent in how we design and implement programs.

3.5 What Next?

In this and the previous chapter, we explored various programming paradigms.

In the next chapter, we begin examining Haskell, looking at our first simple
programs and how to execute those programs with the interactive interpreter.

In subsequent chapters, we look more closely at the concepts of type introduced
in this chapter and abstraction introduced in the previous chapter.

3.6 Exercises

1. This chapter used Python 3 to illustrate the object-oriented paradigm.
Choose a language such as Java, C++, or C#. Describe how it can be used
to write programs in the object-oriented paradigm. Show the Counting00
example in the chosen language.

2. C is a primarily procedural language. Describe how C can be used to
implement object-based programs. Show the Counting00 example in the
chosen language.

3.7 Acknowledgements

In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

e Object-Oriented programming paradigm from my notes Introduction to
Object Orientation [Cunningham 2014], which I wrote originally for the
first C++ (CSci 490) and Java-based (CSci 211) classes at UM in 1996
but expanded and adapted for other courses; these notes were influenced
by Horstmann [Horstmann 1995], Budd [Budd 2000], and other sources

e Prototype-based programming paradigm from draft notes on that topic
[Cunningham 2016]; these notes were influenced by [Craig 2007], [Ierusal-
imschy 2016], and other sources

In 2017, I continued to develop this material as a part of Chapter 1, Fundamentals,
of my 2017 Haskell-based programming languages textbook.

22

In 2018 I reorganized and expanded the previous Fundamentals chapter into four
chapters for the 2018 version of the textbook, now titled Ezploring Languages
with Interpreters and Functional Programming. These are Chapter 1, Evolution
of Programming Languages; Chapter 2, Programming Paradigms; Chapter 3,
Object-Based Paradigms (this chapter); and Chapter 80, Review of Relevant
Mathematics.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

3.8 References

[Budd 2000]: Timothy Budd. Understanding Object-Oriented Programming
with Java, Updated Edition, Addison Wesley, 2000.

[Craig 2007]: Iain D. Craig. Object-Oriented Programming Languages, Springer
2007. (Especially chapter 1 “Introduction” and chapter 3 “Prototype and
Actor Languages”,)

[Cunningham 2014]: H. Conrad Cunningham. Introduction to Object Orien-
tation, 1996-2014.

[Cunningham 2016]: H. Conrad Cunningham. Prototype-Based Programming
Paradigm, 2016.

[Gamma 1995]: Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

[Horstmann 1995]: Cay S. Horstmann. Mastering Object-Oriented Design in
C++, Wiley, 1995. (Especially chapters 3-6 on “Implementing Classes”,
“Interfaces”, “Object-Oriented Design”, and “Invariants” which influenced
my views on object-oriented design and programming)

[Ierusalimschy 2016]: Roberto lerusalimschy. Programming in Lua, Fourth
Edition, Lua.org, 2013; Third Edition, 2013.

[Lua 2018]: LabLua. Lua: The Programming Language website, PUC-Rio,
2018. <http://www.lua.org/about.html:, accessed 23 August 2018.

3.9 Terms and Concepts

Object (state, operations, identity, encapsulation, independent lifecycle, mutable,
immutable), object-based language, class, type, class-based language, inher-
itance, subtype, interface, polymorphism, subtype polymorphism (subtyping,
inclusion polymorphism, polymorphism by inheritance), dynamic binding, object-
oriented language, prototype, clone, slot, delegation, prototype-based language,
embeddability, Lua tables, metatables, and metamethods, function closure.

23

https://john.cs.olemiss.edu/~hcc/csci450/2014fall/notes/OOintro.html
https://john.cs.olemiss.edu/~hcc/csci450/2014fall/notes/OOintro.html

	Object-Based Paradigms
	Chapter Introduction
	Motivation
	Object Model
	Objects
	Essential characteristics
	Important but non-essential characteristics

	Classes
	Inheritance
	Subtype polymorphism
	Example in Python 3

	Prototype-based Paradigm
	Prototype concepts
	Lua as object-based language
	Example in Lua
	Observations

	What Next?
	Exercises
	Acknowledgements
	References
	Terms and Concepts

