
CSci 450: Org. of Programming Languages
Overloading and Type Classes

H. Conrad Cunningham

27 October 2017 (after class)

Contents
9 Overloading and Type Classes 1

9.1 Chapter Introduction . 1
9.2 Polymorphism in Haskell . 1
9.3 Why Overloading? . 2
9.4 Defining an Equality Class and Its Instances 3
9.5 Type Class Laws . 4
9.6 Another Example Class Visible 5
9.7 Class Extension (Inheritance) . 5
9.8 Multiple Constraints . 7
9.9 Built-In Haskell Classes . 7
9.10 Comparison to Other Languages 8
9.11 Functor Class (TODO) . 9
9.12 Applicative Functor Class (TODO) 9
9.13 Monad Class (TODO) . 9
9.14 Code . 9
9.15 Exercises (TODO) . 9
9.16 Acknowledgements . 10
9.17 References . 10
9.18 Terms and Concepts . 10

Copyright (C) 2017, H. Conrad Cunningham

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of October 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Add chapter introduction
• Replace Visible?
• Add exercises
• Add references and concepts

1

9 Overloading and Type Classes

9.1 Chapter Introduction

TODO

9.2 Polymorphism in Haskell

We surveyed the different kinds of polymorphism in a previous module. Haskell
implements two kinds:

1. Parametric polymorphism (usually just called “polymorphism” in functional
languages), in which a single function definition is used for all types of
arguments and results.

For example, consider the function length :: [a] -> Int, which returns
the length of any finite list.

2. Overloading, in which the same name refers to different functions depending
upon the type.

For example, consider the (+) function, which can add any supported
number.

We looked at parametric polymorphism is a previous module. This section
examines overloading.

9.3 Why Overloading?

Consider testing for membership of a Boolean list, where eqBool is an equality-
testing function for Boolean values.

elemBool :: Bool -> [Bool] -> Bool
elemBool x [] = False
elemBool x (y:ys) = eqBool x y || elemBool x ys

We can define eqBool using pattern matching as follows:

eqBool :: Bool -> Bool -> Bool
eqBool True False = False
eqBool False True = False
eqBool _ _ = True

The above is not very general. It works for booleans, but what if we want to
handle lists of integers? or of characters? or lists of lists of tuples?

The aspects of elemBool we need to generalize are the type of the input list and
the function that does the comparison for equality.

2

Thus let’s consider testing for membership of a general list, with the equality
function as a parameter.

elemGen :: (a -> a -> Bool) -> a -> [a] -> Bool
elemGen eqFun x [] = False
elemGen eqFun x (y:ys) = eqFun x y || elemGen eqFun x ys

This allows us to define elemBool in terms of elemGen as follows:

elemBool :: Bool -> [Bool] -> Bool
elemBool = elemGen eqBool

But really the function elemGen is too general for the intended function. Param-
eter eqFun could be any

a -> a -> Bool

function, not just an equality comparison.

Another problem is that equality is a meaningless idea for some data types.
For example, comparing functions for equality is a computationally intractable
problem.

The alternative to the above to make (==) (i.e., equality) an overloaded function.
We can then restrict the polymorphism in elem’s type signature to those types
for which (==) is defined.

We introduce the concept of type classes to to be able to define the group of
types for which an overloaded operator can apply.

We can then restrict the polymorphism of a type signature to a class by using a
context constraint as Eq a => is used below:

elem :: Eq a => a -> [a] -> Bool

We used context constraints in previous modules. Here we examine how to define
the type classes and associate data types with those classes.

9.4 Defining an Equality Class and Its Instances

We can define class Eq to be the set of types for which we define the (==) (i.e.,
equality) operation.

For example, we might define the class as follows, giving the type signature(s)
of the associated function(s) (also called the operations or methods of the class).

class Eq a where
(==) :: a -> a -> Bool

A type is made a member or instance of a class by defining the signature
function(s) for the type. For example, we might define Bool as an instance of
Eq as follows:

3

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

Other types, such as the primitive types Int and Char, can also be defined
as instances of the class. Comparison of primitive data types will often be
implemented as primitive operations built into the computer hardware.

An instance declaration can also be declared with a context constraint, such
as in the equality of lists below. We define equality of a list type in terms of
equality of the element type.

instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

Above, the == on the left sides of the equations is the operation being defined
for lists. The x == y comparison on the right side is the previously defined
operation on elements of the lists. The xs == ys on the right side is a recursive
call of the equality operation for lists.

Within the class Eq, the (==) function is overloaded. The definition of (==)
given for the types of its actual operands is used in evaluation.

In the Haskell standard prelude, the class definition for Eq includes both the
equality and inequality functions. They may also have default definitions as
follows:

class Eq a where
(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) or (/=)
x /= y = not (x == y)
x == y = not (x /= y)

In the case of class Eq, inequality is defined as the negation of equality and vice
versa.

An instance declaration must override (i.e., redefine) at least one of these
functions (in order to break the circular definition), but the other function may
either be left with its default definition or overridden.

9.5 Type Class Laws

Of course, our expectation is that any operation (==) defined for an instance of
Eq should implement an “equality” comparison. What does that mean?

In mathematics, we expect equality to be an equivalence relation. That is,
equality comparisons should have the following properties for all values x, y,

4

and z in the type’s set.

• Reflexivity: x == x is True.
• Symmetry: x == y if and only if y == x.
• Transitivity: if x == y and y == z, then x == z.

In addition, x /= y is expected to be equivalent to not (x == y) as defined in
the default method definition.

Thus class Eq has these type class laws that every instance of the class should
satisfy. The developer of the instance should ensure that the laws hold.

Note: As in many circumstances, the reality of computing may differ a bit from
the mathematical ideal. Consider Reflexivity. If x is infinite, then it may be
impossible to implement x == x. Also, this property might not hold for floating
point number representations.

9.6 Another Example Class Visible

We can define another example class Visible, which might denote types whose
values can be displayed as strings. Method toString represents an element of
the type as a String. Method size yields the size of the argument as an Int.

class Visible a where
toString :: a -> String
size :: a -> Int

We can make various data types instances of this class:

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "True"
toString False = "False"
size _ = 1

instance Visible a => Visible [a] where
toString = concat . map toString
size = foldr (+) 1 . map size

What type class laws should hold for Visible?

There are no constraints on the conversion to strings. However, size must return
an Int, so the “size” of the input argument must be finite and bounded by the
largest value in type Int.

5

9.7 Class Extension (Inheritance)

Haskell supports the concept of class extension. That is, a new class can be
defined that inherits all the operations of another class and adds additional
operations.

For example, we can derive an ordering class Ord from the class Eq, perhaps as
follows. (The definition in the Prelude may differ from the following.)

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
-- Minimal complete definition: (<) or (>)
x <= y = x < y || x == y
x < y = y > x
x >= y = x > y || x == y
x > y = y < x
max x y | x >= y = x

| otherwise = y
min x y | x <= y = x

| otherwise = y

With the above, we define Ord as a subclass of Eq; Eq is a superclass of Ord.

The above default method definitions are circular: < is defined in terms of > and
vice versa. So a complete definition of Ord requires that at least one of these be
given an appropriate definition for the type. Method == must, of course, also be
defined appropriately for superclass Eq.

What type class laws should apply to instances of Ord?

Mathematically, we expect an instance of class Ord to implement a total order
on its type set. That is, given the comparison operator (i.e., binary relation) <=,
then the following properties hold for all values x, y, and z in the type’s set.

• Reflexivity: x <= x is True.
• Antisymmetry: x <= y and y <= x, then x == y.
• Transitivity: if x <= y and y <= z, then x <= z.
• Trichotomy (comparability, totality): x <= y or y <= x

Note: A relation that satisfied the first three properties above is a partial order.
The fourth property requires that all values in the type’s set can be compared
by <=.

In addition to the above laws, we expect == (and \=) to satisfy the Eq type class
laws and <, >, >=, max, and min to satisfy the properties (i.e., default method
definitions) given in the class Ord declaration.

As an example, consider the function isort' (insertion sort), defined in a
previous module. It uses class Ord to constrain the list argument to ordered

6

data items.

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert' x ys

9.8 Multiple Constraints

Haskell also permits classes to be constrained by two or more other classes.

Consider the problem of sorting a list and then displaying the results as a string:

vSort :: (Ord a,Visible a) => [a] -> String
vSort = toString . isort'

To sort the elements, they need to be from an ordered type. To convert the
results to a string, we need them to be from a Visible type.

The multiple contraints can be over two different parts of the signature of a
function. Consider a program that displays the second components of tuples if
the first component is equal to a given value:

vLookupFirst :: (Eq a,Visible b) => [(a,b)] -> a -> String
vLookupFirst xs x = toString (lookupFirst xs x)

lookupFirst :: Eq a => [(a,b)] -> a -> [b]
lookupFirst ws x = [z | (y,z) <- ws, y == x]

Multiple constraints can occur in an instance declaration, such as might be used
in extending equality to cover pairs:

instance (Eq a,Eq b) => Eq (a,b) where
(x,y) == (z,w) = x == z && y == w

Multiple constraints can also occur in the definition of a class, as might be the
case in definition of an ordered visible class.

class (Ord a,Visible a) => OrdVis a

vSort :: OrdVis a => [a] -> String

The case where a class extends two or more classes, as above for OrdVis is called
multiple inheritance.

7

Instances of class OrdVis must satisfy the type class laws for classes Eq and
Visible.

9.9 Built-In Haskell Classes

See Section 6.3 of the Haskell 2010 Language for discussion of the various classes
in the Haskell Prelude library.

9.10 Comparison to Other Languages

Let’s compare Haskell concept of type class with the class concept in familiar
object-oriented languages such as Java and C++.

• In Haskell, a class is a collection of types. In Java and C++, class and
type are similar concepts.

For example, Java’s static type system treats the collection of objects
defined with a class construct as a type. A class can be used to implement
a type. However, it is possible to implement classes whose instances can
behave in ways outside the discipline of the type.

• Haskell classes are similar in concept to Java and C++ abstract classes
except that Haskell classes have no data fields. (There is no multiple
inheritance from classes in Java, of course.)

• Haskell classes are similar in concept to Java interfaces. Haskell classes
can give default method definitions, a feature that was only added in Java
8 and beyond.

• Instances of Haskell classes are types, not objects. They are somewhat like
concrete Java or C++ classes that extend abstract classes or concrete Java
classes that implement Java interfaces.

• Haskell separates the definition of a type from the definition of the methods
associated with that type. A class in Java or C++ usually defines both a
data structure (the member variables) and the functions associated with
the structure (the methods). In Haskell, these definitions are separated.

• The methods defined by a Haskell class correspond to the instance methods
in Java or virtual functions in a C++ class. Each instance of a class provides
its own definition for each method; class defaults correspond to default
definitions for a virtual function in the base class. Of course, Haskell class
instances do not have implicit receiver object or mutable data fields.

• Methods of Haskell classes are bound statically at compile time, not
dynamically bound at runtime as in Java.

8

https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1270006.3

• C++ and Java attach identifying information to the runtime representation
of an object. In Haskell, such information is attached logically instead of
physically to values through the type system.

• Haskell does not support the C++ overloading style in which functions
with different types share a common name.

• The type of a Haskell object cannot be implicitly coerced; there is no
universal base class such as Java’s Object which values can be projected
into or out of.

• There is no access control (such as public or private class constituents)
built into the Haskell class system. Instead, the module system must be
used to hide or reveal components of a class. (In that sense, it is similar
to the object-oriented languages Component Pascal and to the systems
programming language Rust.)

Type classes first appeared in Haskell, but similar concepts have been imple-
mented in more recently designed languages.

• The imperative systems programming language Rust supports traits, a
limited form of type classes.

• The object-functional hybrid language Scala has implicit classes and pa-
rameters, which enable a type enrichment programming idiom similar to
type classes.

• The functional language PureScript supports Haskell-like type classes.

• The dependently typed functional language Idris supports interfaces, which
are, in some ways, a generalization of Haskell’s type classes.

• Functional JavaScript libraries such as Ramda have type class-like fatures

9.11 Functor Class (TODO)

TODO

9.12 Applicative Functor Class (TODO)

TODO?

9.13 Monad Class (TODO)

TODO?

9

9.14 Code

The Haskell code for this chapter is file TypeClassMod.hs.

9.15 Exercises (TODO)

TODO

9.16 Acknowledgements

In Spring 2017 I adapted these lecture notes from my previous lecture notes on
this topic. I based the previous notes, in part, on the presentations in:

• Chapter 12 of the book Haskell: The Craft of Functional Programming
(Second Edition) by Simon Thompson (Addison Wesley, 1999).

• Section 5 of A Gentle Introduction to Haskell Version 98 by Paul Hudak,
John Peterson, and Joseph Fasel (Yale University, September 1999).

For the discussion of Haskell type class laws, I read discussions of the laws for
Haskell type classes on StackOverflow, Reddit, and Typeclassopedia.

I also reviewed the mathematical definitions of equality, equivalence relations,
and total orders on such sites as Wolfram MathWorld and Wikipedia.

I continue to develop these notes in Summer and Fall 2017.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed. The HTML version of this document
may require use of a browser that supports the display of MathML.

9.17 References

TODO complete this

[Bird-Wadler 1998] Richard Bird and Philip Wadler. Introduction to Func-
tional Programming, Second Edition, Addison Wesley, 1998. [First Edition,
1988]

[Chiusano-Bjarnason 2015]] Paul Chiusano and Runar Bjarnason, Func-
tional Programming in Scala, Manning, 2015.

[Cunningham 2014] H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1994-2014.

[Thompson 2011] Simon Thompon. Haskell: The Craft of Programming,
Third Edition, Pearson, 2011.

10

code09/TypeClassMod.hs
http://www.stackoverflow.com
http://www.reddit.com
https://wiki.haskell.org/Typeclassopedia
http://mathworld.wolfram.com
https://en.wikipedia.org
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

9.18 Terms and Concepts

TODO complete this

Polymorphism in Haskell (parametric polymorphism, overloading); Haskell type
system concepts (type classes, overloading, instances, methods, default definitions,
context constraints, class extension, inheritance, subclass, superclass, overriding,
multiple inheritance, class laws) versus related Java/C++ type system concepts
(abstract and concrete classes, objects, inheritance, interfaces); mathematical
concepts (equivalence relation, reflexivity, symmetry, antisymmetry, transitivity,
trichotomy, total and partial orders)/

11

	Overloading and Type Classes
	Chapter Introduction
	Polymorphism in Haskell
	Why Overloading?
	Defining an Equality Class and Its Instances
	Type Class Laws
	Another Example Class Visible
	Class Extension (Inheritance)
	Multiple Constraints
	Built-In Haskell Classes
	Comparison to Other Languages
	Functor Class (TODO)
	Applicative Functor Class (TODO)
	Monad Class (TODO)
	Code
	Exercises (TODO)
	Acknowledgements
	References
	Terms and Concepts

