170 DEFINING FUNCTIONS OVER LISTS

7.25 One list is a sublist of another if the elements of the first occur in the secon
the same order. For instance, "ship" is a sublist of "Fish & Chips"
of "hippies".

d’ in
:] bul_ not

A list is a subsequence of another if it occurs as a sequence of elementsg next g
each other. For example, "Chip" is a subsequence of "Fish & Chips" by not
of "Chin up".

Define functions which decide whether one string is a sublist or a SUbsequenCe
of another string.

7.26 Write QuickCheck properties which test your implementations of the tests for
‘sublist’ and ‘subsequence’. Frowi! - S imeon Thewmpsen.

Hasketl! The Cvetd of

. i Fuwnection Prosy smimin
7.6 Example: text processing TR d Edihend B ddienS w

In word processing systems it is customary for lines to be filled and broken automatically, |3.
to enhance the appearance of the text. This book is no exception. Input of the form

The heat bloomed in December

as the carnival season

kicked into gear.

Nearly helpless with sun and glare, I avoided Rio’s brilliant
sidewalks

and glittering beaches,
panting in dark corners
and waiting out the inverted southern summer.

would be transformed by filling to

The heat bloomed in December as the
carnival season kicked into gear.
Nearly helpless with sun and glare,
I avoided Rio’s brilliant sidewalks
and glittering bedches, panting in
dark corners and waiting out the
inverted southern summer.

To align the right-hand margin, the text is justified by adding extra inter-word spaces on
all lines but the last:

The heat bloomed in December as the
carnival season kicked into gear.
Nearly helpless with sun and glare,
I avoided Rio’s brilliant sidewalks
and glittering beaches, panting in
dark corners and waiting out the
inverted southern summer.

Aninput file in Haskell can be treated as a string of characters, and so string-manipulating
operations play an important role here. Also, since strings are lists, this example will
exercise general list functions.

w

y;

mn

18
ill

EXAMPLE: TEXT PROCESSING 171

overall strategy

In this section we give an example of bottom-up program development, thinking first
about some of the components we will need to solve the problem, rather than decom-
posing the solution in a top-down way.

The first step in processing text will be to split an input string into words, discarding
any white space. The words are then rearranged into lines of the required length. These
lines can then have spaces added so as to justify the text. We therefore start by looking
at how text is split into words.

Extracting words

We first ask, given a string of characters, how should we define a function to take the
first word from the front of a string?
A word is any sequence which does not contain the whitespace characters space,

tab and newline.
whitespace = [’\n’,’\t’,’ ’J

In defining getWord we will use the standard function elem, which tests whether an
object is an element of a list. For instance, elem ’a’ whitespace is False.
To guide the definition, consider two examples.

e getWord " boo" should be "" as the first character is whitespace;

e getWord "cat dog"is "cat". We get this by putting ’c’ on the front of "at",
which is getWord "at dog".

The definition is therefore given by:

getWord :: String -> String

getWord [] =0 . (getWord.1)
getWord (x:xs)
| elem x whitespace = [] (getWord.2)
| otherwise = x : getWord xs (getWord.3)

Consider an example

getWord "cat dog"

~ 2¢? @ getWord "at dog" by (getWord.3)
~ ¢’ : ’a’ : getWord "t dog" by (getWord.3)
~ ¢’ @ ’a’ : ’t’ : getWord " dog" by (getWord.3)
~ ¢’ a0t s [by (getWord.2)
Ay "Cat"

In a similar way, the first word of a string can be dropped.

dropWord :: String -> String

dropWord [] =[]
dropWord (x:xs)
| elem x whitespace = (x:xs)
| otherwise = dropWord xs

172 DEFINING FUNCTIONS OVER LISTS

It is easy to check that dropWord "cat dog" = " dog". We aim to use the functions
getWord and dropWord to split a string into its constituent words. Note that before we
take a word from the string * dog", we should remove the whitespace character(s) from
the front. The function dropSpace will do this.

dropSpace :: String -> String

dropSpace [] =[]

dropSpace (x:xs)
| elem x whitespace = dropSpace Xs
| otherwise = (x:xs)

How is a string st to be split into words? Assuming st has no whitespace at the start,

e the first word in the output will be given by applying getWord to st;

e the remainder will be given by splitting what remains after removing the first word
and the space following it: dropSpace (dropWord st).

The top-level function splitWords calls split after removing any whitespace at the

start of the string. . /
type Word = String us e Wb\"cl {o Qv-aii Nnawe c¢lash
Word VY ——

splitWords :: String —-> [Word]
splitWords st = split (dropSpace st)

split :: String -> [Word]
split [1 = [l
split st
= (getWord st) : split (dropSpace (dropWord st))

Consider a short example.

splitWords " dog cat"
~» split "dog cat"
~ (getWord "dog cat")
: split (dropSpace (dropWord "dog cat"))
"dog" : split (dropSpace " cat")

~» "dog" : split "cat"
~+ "dog" : (getWord "cat")
: split (dropSpace (dropWord "cat"))
~+ "dog" : "cat" : split (dropSpace [1)
~» "dog" : "cat" : split [J
~» "dog" : "cat" : []
~ ["dog" , "cat"]

Splitting into lines

Now we have to consider how to break a list of words into lines. As before, we look to
see how we can take the first line from a list of words.

/
type Line = [Word] usc lyine” Lo q\}oti

—— ,..-———'—'_"'
etlLine :: Int -> [Word] -> Line
& [Word] -> Lin N awme elash

getLine takes two parameters. The first is the length of the line to be formed, and the
second the list from which the words are taken. The definition uses length to give the

o

P

EXAMPLE: TEXT PROCESSING 173

length of a list. The definition will have three cases

¢ In the case that no words are available, the line formed is empty.

e If the first word available is w, then this goes on the line if there is room for it: its
length, length w, has to be no greater than the length of the line, len.
The remainder of the line is built from the words that remain by taking a line of
length len-(length w+1l).

e If the first word does not fit, the line has to be empty.

Aline2 Lo cveid

getLine len [] =[] “e“qmed
& it
getline len (w:ws) N swae clash - epl‘tce'i
| length w <= len = w : restOfLine
O
| otherwise =[] w) l‘!:_‘r‘\ aatb‘“c-g t b ,C
where _{_ b,_(. % t'e*lf": .
nevlen = len - (length w + 1) Covvrec (?’
restOfLine = getLine newlen ws role_

Why is the rest of the line of length 1en—-(length w+1)? Space must be allocated for
the word w and the inter-word space needed to separate it from the word which follows.

How does the function work in an example?

getLine 20 ["Mary",'"Poppins","looks","like",...

~» "Mary" : getLine 15 ["Poppins","looks",'"like",...
~» "Mary" : "Poppins" : getLine 7 ["looks","like",...
~» "Mary" : "Poppins" : "looks" : getLine 1 ["like",...
~+ "Mary" : "Poppins" : "looks" : []

~» ["Mary" , "Poppins" , "looks"]

A companion function,

dropline :: Int -> [Word] -> Line

removes a line from the front of a list of words, just as dropWord is a companion to
getWord. The function to split a list of words into lines of length at most (the constant

value) lineLen can now be defined:

splitLines :: [Word] -> [Line]

——

splitLines [] = [)
splitLines ws < — use &C":L"‘\Q 3

= getLine linelen ws
i3z
: splitlLines (dropLine lineLen ws)

This concludes the definition of the function splitLines, which gives filled lines from
a list of words.

Conclusion

To fill a text string into lines, we write . _ :
—g,((XS = SP/IﬁL‘\V‘CS(

£i11 :: String -> [Line]
£i1l = splitlines . splitWords S?l.'l-Wov’J& XS

To make the result into a single string we need to write a function
joinLines :: [Line] -> String

This is left as an exercise, as is justification of lines.

I
|

174

DEFINING FUNCTIONS OVER LISTS

Exercises

7.27
7.28

7.29

7.30

7.31

7.32

7.33

7.34

Define the function dropLine specified in the text.
Give a definition of the function
joinLine :: Line —> String
which turns a line into printable form. For example,
joinLine ["dog" , "cat"] = "dog cat"
Using the function joinLine, or otherwise, define the function

joinLines :: [Line] -> String

———

which joins together the lines, separated by newlines.

In this case study we have defined separate ‘take’ and ‘drop’ functions for words
and lines. Redesign the program so that it uses ‘split’ functions —like the prelude
function splitAt — instead.

[Harder] Modify the furction joinLine so that it justifies the line to length
lineLen by adding the appropriate number of spaces between the words.

Design a function
wc :: String -> (Int,Int,Int)

which when given a text string returns the number of characters, words and lines
in the string. The end of a line in the string is signalled by the newline character,
’\n’. Define a similar function

wcFormat :: String -> (Int,Int,Int)

which returns the same statistics for the text after it has been filled.
Define a function
isPalin :: -String -> Bool

which tests whether a string is a palindrome — that is whether it is the same read
both backwards and forwards. An example is the string

Madam I’m Adam

Note that punctuation and white space are ignored in the test, and that no
distinction is made between capital and small letters. You might first like
to develop a test which simply tests whether the string is exactly the same
backwards and forwards, and only afterwards take account of punctuation and

capital letters.
[Harder] Design a function

subst :: String -> String -> String -> String
so that

subst 0ldSub newSub st

© SUMMARY 175

is the result of replacing the first occurrence in st of the substring o1dSub by
the substring newSub. For instance,

subst "much " "tall " "How much is that?"
= "How tall is that?"

If the substring 01dSub does not occur in st, the result should be st.

7.35 [Harder] Define QuickCheck properties which test the behaviour of your subst
function, defined in the previous question.

Summary

This chapter has shown how functions can be defined by recursion over lists, and com-
pletes our account of the different ways that list-processing functions can be defined. In
the chapter we have looked at examples of the design principles which we first discussed
in Chapter 4, including ‘divide and conquer’ and general pieces of advice about design-
ing recursive programs. The text processing case study provides a broadly bottom-up
approach to defining a library of functions.

