EXTENDED EXERCISE: SUPERMARKET BILLING 147

Figure 6.11 Superimposing two Images

6.38 Define QuickCheck properties to check the implementation of the functions over
the Image type. How many carry over from the Picture type, and how many
have to be re-defined?

6.7 Extended exercise: supermarket billing

~ This collection of exercises looks at supermarket billing.? The idea is to use the list-
manipulating techniques presented in Chapter 5. In particular we will be using Tist
comprehensions and also the prelude functions mentioned there. We will also expect
local definitions — as explained in Section 4.2 — to be used when appropriate.

The problem

A scanner at a supermarket checkout will produce from a basket of shopping a list of
bar codes, like

{1234,4719,3814,1112,1113,1234]

which has to be converted to a bill as shown in Figure 6.12. We have to decide first
how to model the objects involved. Bar codes and prices (in peTee) can be modelled by
integers; names of goods by strings. We therefore say that

Qe\/\'LS

type Name = String
type Price = Int
type BarCode Int

31 am grateful to Peter Lindsay et al. of the Department of Computer Science at the University of New South
Wales, Australia, for the inspiration for this example, which was suggested by their lecture notes.

148 PROGRAMMING WITH LISTS

Haskell Stores

Dry Sherry, 11lt........... 5.40
Fish Fingers.............. 1.21
Orange Jelly.............. 0.56
Hula Hoops (Giant)........ 1.33
Unknown Item.............. 0.00
Dry Sherry, 11t........... 5.40
Total.........ovvvivnenns 13.90

Figure 6.12 A supermarket bill

The conversion will be based on a database which links bar codes, names and prices.
As in the library, we use a list to model the relationship.

type Database = [(BarCode,Name,Price)]

The example database we use is

codeIndex :: Database

codeIndex = [(4719, "Fish Fingers" , 121),
(5643, "Nappies" , 1010),
(3814, "Orange Jelly", 56),
(1111, "Hula Hoops", 21),
(1112, "Hula Hoops (Giant)", 133),
(1234, "Dry Sherry, 11t", 540)]

The object of the script will be to convert a list of bar codes into a list of (Name ,Price)
pairs; this then has to be converted into a string for printing as above. We make the type
definitions

[BarCodel]
‘[(Name,Price)]

type TillType
type BillType

and then we can say that the functions we wish to define are

makeBill :: TillType -> BillType

which takes a list of bar codes to a list of name/price pairs,

formatBill :: BillType -> String

which takes a list of name/price pairs into a formatted bill, and

produceBill :: TillType -> String

which will combine the effects of makeBill and formatBill, thus
produceBill = formatBill . makeBill

The length of a line in the bill is decided to be 30. This is made a constant, thus

lineLength :: Int
lineLength = 30

Smesiad masamasa AL AINU 14>

Making 1ineLength a constant in this Way means that to change the length of a line in
the bill, only one definition needs to be altered; if 30 were used in each of the formattin g
functions, then each would have to be modified on changing the line length. The rest of
the script is developed through the sequences of exercises which follow.

Formatting the bill

First we develop the formatBi11l function from the bottom up: we design functions
to format prices, lines, and the total, and using these we finally build the £ ormatBill
function itself.

i S
Exercises e = doylarvs
6.39 Given anumber of peree, 1023 say, the peunds and perrce parts are given by 1023

‘div¢ 100and 1023 ‘mod* 100. Using this fact, and the show function, define

a function l/ $ormetlents
formatRonce :: Price -> String

so that, for example, fermatPence 1023 = "10.23"; you need to be careful
about cases like "12. 02", formgtlentds

6.40 Using the f sxmatPence function, define a function

QewLS

formatLine :: (Name,Price) -> String
which formats a line of a bill, thus

formatLine ("Dry Sherry, 11t",540)
= "Dry Sherry, 11t........... 5.40\n"

Recall that *\n” is the newline character, that ++ can be used to join two strings
together, and that 1ength will give the length of a string. You might also find the
replicate function useful.

6.41 Using the formatLine function, define
formatLines :: [(Name,Price)] -»> String

which applies formatLine to each (Name,Price) pair, and joins the results
together.

6.42 Define a function
makeTotal :: BillType -> Price

which takes a list of (Name,Price) pairs, and gives the total of the prices. For
instance,

makeTotal [(" ... ",540),(" ... ",121)] = 661
6.43 Define the function
formatTotal :: Price -> String

so that, for example,

formatTotal 661 = "\nTotal.................. . 6.61"

149

150

6.44

PROGRAMMING WITH LISTS

Using the functions formatLines, makeTotal and formatTotal, define
formatBill :: BillType -> String
so that on the input

[("Dry Sherry, 11t" ,540), ("Fish Fingers", 121),
("Orange Jelly" ,56), ("Hula Hoops (Giant)",133),
("Unknown Item",0),("Dry Sherry, 11t",540)]

the example bill at the start of the section is produced.

Making the bill: bar codes into names and prices

Now we have to look at the database functions which accomplish the conversion of bar
codes into names and prices.

Exercises

6.45

6.46

6.47

Define a function

look :: Database -> BarCode -> (Name ,Price)

which returns the (Name,Price) pair corresponding to the BarCode in the
Database. If the BarCode does not appear in the database, then the pair
("Unknown Item", 0) shouldbe the result.

Hint: using the ideas of the library database you might find that you are returning
a list of (Name ,Price) rather than a single value. You can assume that each bar
code occurs only once in the database, so you can extract this value by taking the
head of such a list if it is non-empty.

Define a function ™ q7 w aut 4o

/
lookup :: BarCode -> (Name,Price) W am e }Obk “f

which uses 1ook to look up an item in the particular database codeIndex. This
function clashes with a function Lookup defined in the prelude; consult page 53
for details of how to handle this.

Define the function
makeBill :: TillType -> BillType

which applies lookup to every item in the input list. For instance, when ap-
plied to [1234,4719,3814, 1112,1113,1234] the result will be the list of
(Name ,Price) pairs given in Exercise 6.25. Note that 1113 does not appear in
codeIndex and so is converted to ("Unknown Item",0).

This completes the definition of makeBill and together with formatBill gives
the conversion program.

Extending the problem

We conclude with some further exercises.

EXTENDED EXERCISE: SUPERMARKET BILLING 151

Haskell Stores

Dry Sherry, 1lt........... 5.40
Fish Fingers.............. 1.21
Orange Jelly.............. 0.56
Hula Hoops (Giant)........ 1.33
Unknown Item.............. 0.00
Dry Sherry, 11t........... 5.40
Discount i s v it 5% e menmn 1.00
Total sy e Eae wr o 12.90

Figure 6.13 Bills with ‘multibuy’ discounts

Exercises

6.48

6.49

6.50

6.51

6.52

You are asked to add a discount for multiple buys of sherry: for every two bottles
bought, there is a 1.00 discount. From the example list of bar codes

[1234,4719,3814,1112,1113,1234]

the bill should be as illustrated in Figure 6.13. You will probably find it helpful
to define functions

makeDiscount :: BillType -> Price
formatDiscount :: Price -> String

which you can use in a redefined

formatBill :: BillType -> String

Design functions which update the database of bar codes. You will need a function
to add a BarCode and a (Name,Price) pair to the Database, while at the
same time removing any other reference to the bar code already present in the
database.

Re-design your system so that bar codes which do not appear in the database give
no entry in the final bill. There are (at least) two ways of doing this.

e Keep the function makeBill as it is, and modify the formatting functions,

or

¢ modify the makeBill function to remove the ‘unknown item’ pairs.
[Harder] How appropriate would it be to test your supermarket billing system
using QuickCheck? Could you check parts of the system using QuickCheck?
Could you use it to test the whole system, or could you do both?

[Project] Design a script of functions to analyse collections of sales. Given a list
of Til1Type, produce a table showing the total sales of each item. You might
also analyse the bills to see which pairs of items are bought together; this could
assist with placing items in the supermarket,

